

Certified Tester

Automotive Software Tester (CT-AuT)

Syllabus
v2.1

International Software Testing Qualifications Board

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 2 of 69 2025/04/30
© International Software Testing Qualifications Board

Copyright Notice
Copyright Notice © International Software Testing Qualifications Board (hereinafter called ISTQB®)

ISTQB® is a registered trademark of the International Software Testing Qualifications Board.

Copyright © 2024 the authors for the minor update: Ralf Bongard (Chair GTB WG), Klaudia Dussa-
Zieger, Matthias Friedrich, Thorsten Geiselhart, Horst Pohlmann (PO ISTQB CT-AuT), Ralf
Reißing, Alexander Schulz.

Copyright © 2018 the authors Graham Bath, André Baumann, Arne Becher, Ralf Bongard (Lead
Syllabus and Co-Chair WG), Kai Borgeest, Tim Burdach, Mirko Conrad, Klaudia Dussa-Zieger,
Matthias Friedrich, Dirk Gebrath, Thorsten Geiselhart, Matthias Hamburg, Uwe Hehn, Olaf Janßen,
Jacques Kamga, Horst Pohlmann (Lead Exam and Chair WG), Ralf Reißing, Karsten Richter, Ina
Schieferdecker, Alexander Schulz, Stefan Stefan, Stephanie Ulrich, Jork Warnecke and Stephan
Weißleder.

Copyright © 2011 Version 1.0 developed by Hendrik Dettmering on behalf of GASQ – Global
Association for Software Quality AISBL.

All rights reserved. The authors hereby transfer the copyright to the ISTQB®. The authors (as
current copyright holders) and ISTQB® (as the future copyright holder) have agreed to the following
conditions of use:

Extracts, for non-commercial use, from this document may be copied if the source is
acknowledged. Any Accredited Training Provider may use this syllabus as the basis for a
training course if the authors and the ISTQB® are acknowledged as the source and
copyright owners of the syllabus and provided that any advertisement of such a training
course may mention the syllabus only after official Accreditation of the training materials
has been received from an ISTQB®-recognized Member Board.

Any individual or group of individuals may use this syllabus as the basis for articles and
books, if the authors and the ISTQB® are acknowledged as the source and copyright
owners of the syllabus.

Any other use of this syllabus is prohibited without first obtaining the approval in writing of
the ISTQB®.

Any ISTQB®-recognized Member Board may translate this syllabus provided they
reproduce the abovementioned Copyright Notice in the translated version of the syllabus.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 3 of 69 2025/04/30
© International Software Testing Qualifications Board

Revision History
Version Date Remarks

2.1 2025/04/30

Minor Update: Changes to existing content affected by updates of
referenced standards, ISTQB glossary and ISTQB CTFL v4.
Improved wording for better understandability. Transferred into
current syllabus template. See Appendix C – Release Notes for
details.

2.0.2 2018/07/04 GA approval of English version (English translation of V2.0 DE)

2.0 DE 2017/03/31 Learning objectives and content based on V.1.1.

Release of the (corresponding German) edition per GTB WG
meeting of 31.03.2017 (Frankfurt a. M.).

1.1 DE 2015/06/14 Review of content and comparison to the German ISTQB® Certified
Tester Foundation Level syllabus 2011 V1.0.1 and the ISTQB®
Glossary V2.2

Release per GTB working group meeting of 15.03.2015 (Munich).

1.0 DE 2011/01/19 Author: Dr. Hendrik Dettmering, developed upon request of gasq
GmbH

The copyright was fully transferred to German Testing Board e. V.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 4 of 69 2025/04/30
© International Software Testing Qualifications Board

Table of Contents

Copyright Notice ... 2

Revision History.. 3

Table of Contents ... 4

Acknowledgements .. 7

0 Introduction .. 8

0.1 Purpose of this Syllabus ... 8

0.2 The Certified Tester Automotive Software Tester ... 8

0.3 Career Path for Testers .. 8

0.4 Business Outcomes .. 9

0.5 Learning Objectives and Cognitive Level of Knowledge .. 9

0.6 The Certified Tester Automotive Software Tester Certificate Exam 10

0.7 Accreditation ... 10

0.8 Handling of Standards .. 11

0.9 Level of Detail ... 11

0.10 How this Syllabus is Organized .. 12

1 Introduction to Automotive Software Testing – 30 minutes ... 13

1.1 Requirements from Divergent Project Objectives and Increasing Product Complexity .. 14

1.2 Project Aspects Influenced by Standards ... 15

1.3 The Six Generic Stages in the System Lifecycle .. 15

1.4 The Contribution and Participation of the Tester in the Release Process 16

2 Standards for the Testing of Electric/Electronic (E/E) Systems – 300 minutes 17

2.1 Automotive SPICE (ASPICE) .. 19

2.1.1 Design and Structure of the Standard .. 19

2.1.2 Requirements of the Standard .. 21

2.2 ISO 26262 ... 24

2.2.1 Functional Safety and Safety Culture ... 24

2.2.2 Integration of the tester in the safety lifecycle .. 24

2.2.3 Structure and Testing of Specific Parts of the Standard .. 25

2.2.4 The Influence of Criticality on the Extent of the Test .. 26

2.2.5 Application of Content from the CTFL® in the Context of ISO 26262 27

2.3 AUTOSAR ... 29

2.3.1 Project Objectives of AUTOSAR .. 29

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 5 of 69 2025/04/30
© International Software Testing Qualifications Board

2.3.2 General Structure of AUTOSAR [Informative] .. 29

2.3.3 Influence of AUTOSAR on the Work of the Tester ... 30

2.4 Comparison of ASPICE, ISO 26262, and CTFL® ... 30

2.4.1 Objectives of ASPICE and ISO 26262 ... 30

2.4.2 Comparison of Test Levels between ASPICE, ISO 26262, and CTFL® 30

3 Testing in a Virtual Environment – 160 minutes .. 32

3.1 Test Environment in General .. 33

3.1.1 Motivation for a Test Environment in Automotive Development 33

3.1.2 General Parts of a Test Environment ... 33

3.1.3 Differences Between Closed-loop and Open-loop Systems 33

3.1.4 loopDatabases and Communication Protocols of an ECU ... 34

3.2 Testing in XiL Test Environments ... 34

3.2.1 Model-in-the-loop (MiL) .. 35

3.2.2 Software-in-the-loop (SiL) ... 36

3.2.3 Hardware-in-the-loop (HiL) ... 37

3.2.4 Comparison of the XiL Test Environments ... 37

4 Static Testing and Dynamic Testing – 230 minutes .. 41

4.1 Static Testing .. 42

4.1.1 The MISRA-C Guidelines ... 42

4.1.2 Quality Characteristics for Requirements Reviews .. 42

4.2 Dynamic Testing ... 44

4.2.1 Modified Condition/Decision Testing .. 44

4.2.2 Back-to-Back Testing.. 45

4.2.3 Fault Injection Testing .. 46

4.2.4 Requirements-Based Testing ... 46

4.2.5 Context-Dependent Selection ... 47

5 List of Abbreviations .. 49

6 Domain Specific Terms .. 51

7 References .. 54

7.1 Standards .. 54

7.2 ISTQB® Documents ... 55

7.3 Glossary References .. 55

8 Trademarks .. 56

9 Appendix A – Learning Objectives/Cognitive Level of Knowledge .. 57

Level 1: Remember (K1) .. 57

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 6 of 69 2025/04/30
© International Software Testing Qualifications Board

Level 2: Understand (K2) ... 57

Level 3: Apply (K3) ... 58

10 Appendix B – Business Outcomes Traceability Matrix with Learning Objectives 59

11 Appendix C – Release Notes .. 67

12 Appendix D – Automotive Databases and Communication Protocols 68

13 Index .. 69

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 7 of 69 2025/04/30
© International Software Testing Qualifications Board

Acknowledgements
This document was formally released by the General Assembly of the ISTQB® in 2018. The
revised version 2.1 has been formally released by the CT-AuT Product Owner Horst Pohlmann in
accordance with the process.

It was produced by a team from the German Testing Board for the International Software Testing
Qualifications Board: Ralf Bongard (lead), Klaudia Dussa-Zieger, Matthias Friedrich, Thorsten
Geiselhart, Horst Pohlmann, Ralf Reißing, Alexander Schulz.

The team thanks Michael Humm for technical reviews, and the review team and the Member
Boards for their suggestions and input.

The following persons participated in the reviewing, commenting and balloting of this syllabus:

Laura Albert, Ádám Bíró, Darvay Tamás Béla, Yuliia Fomuliaieva, Matthias Hamburg,
Jarek Hryszko, Joanna Kazun, Imre Mészáros, Krisztián Miskó, Gary Mogyorodi,
Ingvar Nordström, Mirosław Panek, Lukáš Piška, Meile Posthuma, Márton Siska, Klaus Skafte,
Radosław Smilgin, Michael Stahl.

The team thanks Gary Mogyorordi for technical editing.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 8 of 69 2025/04/30
© International Software Testing Qualifications Board

0 Introduction

0.1 Purpose of this Syllabus

This syllabus forms the basis for the International Software Testing Qualification for the Automotive
Software Tester. The ISTQB® provides this syllabus as follows:

1. To member boards, to translate into their local languages and to accredit training
providers. Member boards may adapt the syllabus to their particular language needs and
modify the references to adapt to their local publications.

2. To certification bodies, to derive examination questions in their local languages adapted to
the learning objectives for this syllabus.

3. To training providers, to produce training materials and determine appropriate teaching
methods.

4. To certification candidates, to prepare for the certification exam (either as part of a training
course or independently).

5. To the international software and system engineering community, to advance the software
and system testing profession, and as a basis for books and articles.

0.2 The Certified Tester Automotive Software Tester

The Automotive Software Tester qualification is aimed at anyone involved in software testing in the
automotive domain. This includes roles such as testers, test analysts, test engineers, test
consultants, test managers, user acceptance testers, and software developers. The Automotive
Software Tester qualification is also appropriate for anyone who strives for a basic understanding
of automotive software testing, such as project managers, safety managers, quality managers,
software development managers, business analysts, IT directors and management consultants.

0.3 Career Path for Testers

The ISTQB® scheme provides support for testing professionals at all stages of their careers.
Individuals who achieve the ISTQB® Certified Tester Automotive Software Tester certification may
also be interested in the Core Advanced Levels (Test Analyst, Technical Test Analyst, and Test
Manager) and thereafter Expert Level (Test Management or Improving the Test Process). The
Specialist stream offers a deep dive into areas that have specific test approaches and test
activities e.g. in Agile Testing, AI Testing, or Mobile App Testing, or which cluster testing know-how
for certain industry domains e.g. Gambling or Gaming. Please visit www.istqb.org for the latest
information on ISTQB’s Certified Tester Scheme.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 9 of 69 2025/04/30
© International Software Testing Qualifications Board

0.4 Business Outcomes

This section lists the Business Outcomes expected from a candidate who has achieved the
Automotive Software Tester certification.

A person certified as Automotive Software Tester can…

AuT-BO1 Collaborate effectively in a test team. (“collaborate”)

AuT-BO2 Adapt the test techniques known from the ISTQB® Certified Tester Foundation
level (CTFL®) to the specific project requirements. (“adapt”)

AuT-BO3 Consider the basic requirements of the relevant standards (i.e., Automotive
SPICE® and ISO 26262) for the selection of suitable test techniques. (“select”)

AuT-BO4 Support the test team in the risk-based planning of the test activities and apply
known elements of structuring and prioritization. (“support & apply”)

AuT-BO5 Apply the virtual test environments (i.e., MiL, SiL, and HiL) in test environments.
(“apply”)

0.5 Learning Objectives and Cognitive Level of Knowledge

Learning Objectives support business outcomes and are used to create the Certified Tester
Automotive Software Tester exams.

The specific learning objectives levels are shown at the beginning of each chapter, and classified
as follows:

 K1: Remember

 K2: Understand

 K3: Apply

Further details and examples of learning objectives are given in Appendix A.

For all terms listed as keywords just below chapter headings, the correct name and definition from
the ISTQB® glossary shall be remembered (K1), even if not explicitly mentioned in the learning
objective.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 10 of 69 2025/04/30
© International Software Testing Qualifications Board

0.6 The Certified Tester Automotive Software Tester Certificate Exam

The Certified Tester Automotive Software Tester Certificate exam will be based on this syllabus.
Answers to exam questions may require the use of material based on more than one section of this
syllabus. All sections of the syllabus are examinable, except for the Introduction, the Appendices,
and sections marked as informative only. The exam questions will confirm knowledge of keywords
and learning objectives at all K-levels.

Standards and books are included as references, but their content is not examinable, beyond what
is summarized in the syllabus itself from such standards and books.

Refer to Exam Structures and Rules document for the Certified Tester Automotive Software Tester
Syllabus document for further details.

To take the exam for a Certified Automotive Software Tester candidates must have the ISTQB®
Certified Tester – Foundation Level (CTFL®) certificate and an interest in testing in automotive
development projects.

However, it is strongly recommended that candidates also:

 have at least a minimum background knowledge in software development or software
testing (for example six months experience as a software tester or as a developer), or

 have taken a course, which is accredited per the ISTQB® standard (by an ISTQB®-
member-board) and/or

 have gained initial experience in testing Electric/Electronic (E/E) system development
projects in the Automotive industry

Entry Requirement Note: The ISTQB® Foundation Level certificate shall be obtained before taking
the Automotive Software Tester certification exam

0.7 Accreditation

An ISTQB® Member Board may accredit training providers whose course material follows this
syllabus. Training providers should obtain accreditation guidelines from the Member Board or body
that performs the accreditation. An accredited course is recognized as conforming to this syllabus
and is allowed to have an ISTQB® exam as part of the course.

The accreditation guidelines for this syllabus follow the general Accreditation Guidelines published
by the Processes Management and Compliance Working Group.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 11 of 69 2025/04/30
© International Software Testing Qualifications Board

0.8 Handling of Standards

International standardization organizations like IEEE and ISO have issued standards associated
with quality characteristics and software testing. Such standards are referenced in this syllabus.
The purpose of these references is to provide a framework (as in the references to ISO/IEC 25010
regarding quality characteristics) or to provide a source of additional information if desired by the
reader. Please note that syllabi are using standard documents as reference. Standard documents
are not intended for examination. Refer to chapter ‘7 References’ for more information on
Standards.

0.9 Level of Detail

The level of detail in this syllabus allows internationally consistent courses and exams. To achieve
this goal, the syllabus consists of:

 General instructional objectives describing the intention of the Certified Tester Automotive
Software Tester Syllabus

 A list of terms that students must be able to recall

 Learning objectives for each knowledge area, describing the cognitive learning outcome to
be achieved

 A description of the key concepts, including references to sources such as accepted
literature or standards

The syllabus content is not a description of the entire knowledge area of automotive software
testing; it reflects the level of detail to be covered in Certified Tester Automotive Software Tester
training courses. It focuses on test concepts and techniques that apply to software projects in the
automotive domain.

The syllabus uses the terminology (i.e., the name and meaning) used in software testing and
quality assurance according to the ISTQB® Glossary.

For the terminology in related disciplines please refer to the respective glossaries: ISO 26262 for
functional safety engineering, and IREB® Glossary for requirements engineering.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 12 of 69 2025/04/30
© International Software Testing Qualifications Board

0.10 How this Syllabus is Organized

There are four chapters with examinable content. The top-level heading for each chapter specifies
the time for the chapter; timing is not provided below chapter level. For accredited training courses,
the syllabus requires a minimum of 12 hours of instruction, distributed across the four chapters as
follows:

 Chapter 1: Introduction to Automotive Software Tester (30 minutes)

o The testers learn about the challenges of developing automotive products,
including opposing goals, increasing complexity, and the impact of standards
on time, cost, quality, and risks.

o They also learn about the six phases of a product's lifecycle and their role in
releasing products.

 Chapter 2: Standards for the testing of E/E systems (300 minutes)

o The testers learn about ASPICE, covering its capability levels, test-relevant
processes, documentation requirements, and the role of a test strategy, along
with ASPICE's traceability and test strategy expectations.

o For ISO 26262, the testers focus on safety culture, automotive safety integrity
levels, test techniques, and understand their role within the safety lifecycle.

o Testers also understand the influence of AUTOSAR on testing and compare
the objectives of ASPICE, ISO 26262, and CTFL® and the respective test
levels.

 Chapter 3: Testing in a virtual environment (160 minutes)

o The testers learn about the purpose, structure, and essential functions of
automotive virtual test environments, including closed-loop and open-loop
systems, and gain an understanding of different XiL test environments (i.e.,
MiL, SiL, and HiL), their applications, advantages, and limitations.

o They also learn how to assign appropriate test scopes to each test
environment.

 Chapter 4: Automotive-specific static and dynamic test techniques (230 minutes)

o The testers learn how to explain and apply essential guidelines for code, such
as MISRA-C, and requirements, such as ISO/IEC/IEEE 29148.

o The testers create test cases for modified condition/decision coverage,
understand fault injection and back-to-back testing, and select suitable test
techniques and test approaches based on project context.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 13 of 69 2025/04/30
© International Software Testing Qualifications Board

1 Introduction to Automotive Software Testing – 30
minutes

Keywords

none

Learning Objectives for Chapter 1

1.1 Requirements from Divergent Project Objectives and Increasing Product Complexity

AuT-1.1. (K2) Explain and give examples of the challenges of automotive product
development that arise from divergent project objectives and increasing product
complexity

1.2 Project Aspects Influenced by Standards

AuT-1.2 (K1) Recall project aspects that are influenced by standards (e.g., time, cost,
quality, project risks and product risks)

1.3 The Six Generic Stages in the System Lifecycle

AuT-1.3 (K1) Recall the six generic stages in the system lifecycle per ISO/IEC/IEEE 24748-
1

1.4 The Contribution and Participation of the Tester in the Release Process

AuT-1.4 (K1) Recall the role (i.e., contribution and collaboration) of the tester in the release
process

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 14 of 69 2025/04/30
© International Software Testing Qualifications Board

Introduction

One of the seven principles of software testing is “Testing is context dependent”. This chapter
outlines the E/E system development context in which an “Automotive Software Tester”1 operates.
On the one hand, conflicting goals such as cost efficiency, safety requirements, and fast time-to-
market, increasing complexity and intense demand for innovative solutions lead to particular
challenges. On the other hand, standards and the lifecycle of vehicles form the framework in which
the tester is working. In the end, the tester is working to release of software and systems.

1.1 Requirements from Divergent Project Objectives and Increasing
Product Complexity

Original Equipment Manufacturers (OEMs) and suppliers are launching new car models2 more
frequently than in the past, despite facing increasing cost pressures. The following aspects
influence this process:

 Increasing number of models and complexity:
To be able to better meet individual end-customer needs, OEMs offer more and more car
models. However, this reduces the quantities per model. To cover the resulting increases
in development and production costs, producers develop several models as varieties of a
common platform. The development of a platform, however, is far more complex than the
development of a single model because of the need to keep control over the many
possible variations.

 Increasing range of functionality:
The end-customer requests more and more innovations while maintaining existing
functions, which causes the range of functions to increase.

 Increasing number of configurations:
The end-customer wants to adjust their car model to their individual wishes. This requires
a wide range of configurations for a single car model, including in terms of functionality.

 Increased quality requirements:
Despite increasing levels of functionality and complexity, the end-customer expects the
same or even higher quality of the vehicle and its functions.

As the project objectives – time, cost, and scope – are competing (i.e., known as the ‘Project
management triangle’, with quality often considered an aspect of scope) OEMs and suppliers must
strive for a more efficient system development, which allows for shorter development times despite
increasing complexity, increasing quality requirements and smaller budgets.

1 In the following we will only use the term “Tester”: It is to be understood as the short form of “Automotive Software Tester.”
2 Example from a study by the management consultancy Progenium: “In 1990, only 101 different car models were on offer
…, in 2014, this number had increased to 453”

Above this, “the next decade of mobility transformation puts the consumer first and foremost” brings up new challenges

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 15 of 69 2025/04/30
© International Software Testing Qualifications Board

1.2 Project Aspects Influenced by Standards

Standards influence major project aspects such as time, cost, quality, project risks and product
risks:

 Standards increase the efficiency of processes (e.g., by reducing development time or cost
while maintaining stable quality) by:

o uniform naming

o better transparency

o easier collaboration (i.e., internal and external)

o increased re-usability

o consolidated experience (‘Best Practice’)

 With well-established technology guidelines, they help to discover risks and defects early
and to resolve the identified risks and defects.

 Standards are the basis for audits. Therefore, an auditor can assess the quality of a
product or process. At the same time, the auditor can check if the standards meet the
requirements.

 Standards are part of the contractual or regulatory provisions and guidelines.

This syllabus references selected standards relevant to automotive software testing, including:

 ISO 26262 and ASPICE, which provides standardized processes and methods

 AUTOSAR, which standardizes software architecture and products

1.3 The Six Generic Stages in the System Lifecycle

The system lifecycle of a car and its components3 begins with the product idea and ends with
decommissioning. It involves development, business, logistics, and production technology
processes.

Milestones with defined entry criteria and exit criteria ensure mature processes and structure the
system lifecycle4 into six stages with typical test activities5:

 Concept: Test planning to define the test strategy and test objectives

 Development: Test analysis, test design, test implementation, test execution, test
monitoring, test control, and test completion ensure quality.

 Production: End of line testing to verify readiness

 Utilization: Typically, no test activities are performed.

 Support: Maintenance testing to ensure continued reliability

 Retirement: Migration testing validates decommissioning or data transfer.

3 ECUs (hardware and software) as well as components.
4 The safety lifecycle of ISO 26262 consists of similar phases.
5 For test activities see also: fundamental test process.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 16 of 69 2025/04/30
© International Software Testing Qualifications Board

The widely used automotive product development process often condenses these into three main
stages: concept, development, and production, where most testing and release activities occur.

1.4 The Contribution and Participation of the Tester in the Release
Process

In the automotive environment, a project reaches a milestone by declaring a release once the
goals are verified as achieved. From this point on, the release item is considered to have the
maturity required for its intended use. The release item includes the software configuration
including parameterization and, if necessary, hardware and mechanics, and the supporting
documentation.

The tester delivers important information for the release process via the final test report:

 tested items

 evaluated quality characteristics (e.g., response time and resource usage)

 known defects

 product metrics

 information for release recommendation upon achieving the exit criteria based on the
release level as defined in the Best Practice Guidelines (e.g., testing on closed terrain,
testing on public roads, and installation recommendations)

Additionally, the tester participates in creating further deliverables relevant for the release:

 prioritize and participate in the decision regarding changes

 prioritize features for the order of implementation

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 17 of 69 2025/04/30
© International Software Testing Qualifications Board

2 Standards for the Testing of Electric/Electronic (E/E)
Systems – 300 minutes

Keywords

functional safety, method table

Domain Specific Keywords

automotive safety integrity level (ASIL), software verification, system verification

Learning Objectives for Chapter 2

2.1 Automotive SPICE (ASPICE)

AuT-2.1.1.1 (K1) Recall the two dimensions of ASPICE

AuT-2.1.1.3 (K2) Explain the capability levels 0 to 3 of ASPICE

AuT-2.1.2.1 (K1) Recall the purpose of the test-specific processes of ASPICE

AuT-2.1.2.2 (K2) Explain the meaning of the four rating levels and the capability indicators of
ASPICE from the testing perspective

AuT-2.1.2.3 (K2) Explain the requirements of ASPICE for a test strategy including the criteria
for regression verification

AuT-2.1.2.4 (K1) Recall the requirements of ASPICE for testware

AuT-2.1.2.5 (K3) Use verification measures for software unit verification

AuT-2.1.2.6 (K2) Explain the different traceability requirements of ASPICE from the testing
perspective

2.2 ISO 26262

AuT-2.2.1.1 (K2) Explain the objective of functional safety for E/E systems

AuT-2.2.1.2 (K1) Recall the testers’ contribution to the safety culture

AuT-2.2.2 (K2) Discuss the role of the tester in the framework of the safety lifecycle per ISO
26262

AuT-2.2.3.2 (K1) Recall the parts of ISO 26262 that are relevant to the tester

AuT-2.2.4.1 (K1) Recall the criticality levels of ASIL

AuT-2.2.4.2 (K2) Explain the influence of ASIL on test techniques and test types for static
testing and dynamic testing and the resulting test scope

AuT-2.2.5 (K3) Use the method tables of ISO 26262

2.3 AUTOSAR

AuT-2.3.1 (K1) Recall the project objectives of AUTOSAR

AuT-2.3.3 (K1) Recall the influence of AUTOSAR on the work of the tester

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 18 of 69 2025/04/30
© International Software Testing Qualifications Board

2.4 Comparison of ASPICE, ISO 26262, and CTFL®

AuT-2.4.1 (K1) Recall the different objectives of ASPICE and ISO 26262

AuT-2.4.2 (K2) Explain the differences between ASPICE and ISO 26262 and CTFL®
regarding test levels

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 19 of 69 2025/04/30
© International Software Testing Qualifications Board

2.1 Automotive SPICE (ASPICE)

Introduction

Process improvement follows the approach that the quality of a system is influenced by the quality
of the development process. Process models offer an option for improvement by measuring the
process capability of an organizational unit or project compared to the reference model.
Furthermore, the model serves as the framework for the improvement of the processes of an
organizational unit or project using the assessment results.

Since 2001, the SPICE6 User Group and the Automotive Special Interest Group (AUTOSIG)
developed ASPICE. Since 2005, the standard has been well established in the automotive
industry. All statements made in this paragraph refer to ASPICE version 4.0.

2.1.1 Design and Structure of the Standard

2.1.1.1 The two dimensions of ASPICE

ASPICE defines an assessment model with two key dimensions of assessment:

In the process dimension, ASPICE defines the process reference model (PRM). The PRM
serves as a reference to compare the organization’s processes against it so that they can be
assessed and improved. For each process, ASPICE defines the purpose, the results, the required
actions (i.e., base practices) and the information items (i.e., work results and work products).

In the capability dimension, ASPICE defines several process attributes (i.e., measurable
characteristics) that divide the capability level. For each process, there are generic and process
specific attributes. ISO/IEC 33020 serves as a basis for the assessment of the process capability.

With the help of this model, it is possible to assess the processes (i.e., process dimension)
regarding their capability (i.e., capability dimension).

2.1.1.2 Process categories in the process dimension [informative]

ASPICE categorizes processes into groups, which are further classified into categories:

The primary lifecycle processes include all processes that serve as key processes:

 Acquisition process group (ACQ)

 Supply process group (SPL)

 System engineering process group (SYS)

 Software engineering process group (SWE)

 Machine learning engineering process group (MLE)

 Hardware engineering process group (HWE)

 Validation process group (VAL)

6 Acronym for “Software Process Improvement and Capability Determination”

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 20 of 69 2025/04/30
© International Software Testing Qualifications Board

The supporting lifecycle processes include all processes that support other processes:

 Supporting process group (SUP)

The organizational lifecycle processes include all processes that support the company
objectives:

 Management process group (MAN)

 Process Improvement process group (PIM)

 Reuse process group (REU)

For the tester, the process groups system engineering (SYS) and software engineering (SWE) are
of special interest, possibly also the MLE, VAL and HWE.

2.1.1.3 Capability levels (CL) in the capability dimension

The assessor assesses the process capability with the help of a six-level assessment system (i.e.,
display of levels). ASPICE defines the capability levels 0 to 37 as follows:

 Level 0 (incomplete process): The process is not implemented or fails to achieve its
process purpose. At this level there is little or no evidence of any systematic achievement
of the process outcome. The process does not exist or does not achieve the purpose of
the process. Example: The tester only checks a small part of the requirements.

 Level 1 (performed process): The implemented process achieves its purpose (but maybe
executed inconsistently). Example: There is no complete planning visible for a test
process. However, the tester can show the level of fulfilment of the requirements.

 Level 2 (managed process): The project plans and supervises the test process in its test
execution. Under certain circumstances, it adapts the course of action during test
execution to meet the test objectives. The requirements for the work products are defined.
A project member reviews the work products and approves them. Example: The test
manager defines the test objectives, plans the test activities and manages the test
process. This includes reacting to deviations accordingly.

 Level 3 (established process): The project uses a standardized test process, and findings
are used for constant improvement. Example: There is an organizational test strategy.
After test completion the test manager works to further develop it.

7 The capability level 4 and 5 are currently not in the focus of the automotive industry.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 21 of 69 2025/04/30
© International Software Testing Qualifications Board

2.1.2 Requirements of the Standard

2.1.2.1 Test-specific processes of ASPICE

ASPICE defines test processes according to all processes of the software and system
development:

 Software unit verification (SWE.4) requires static testing and dynamic testing. It assesses
the components of the software based on its detailed design (SWE.3).

 Software component verification and integration verification (SWE.5) assess the integrated
software based on the software architectural design (SWE.2).

 Software verification (SWE.6) assesses the integrated software based on the software
requirements analysis (SWE.1).

 System integration and integration verification (SYS.4) assess the integrated system
based on the system architectural design (SYS.3).

 System verification (SYS.5) assesses the integrated system based on the system
requirements analysis (SYS.2).

2.1.2.2 Rating levels and capability indicators

An assessor can assess the process capability via capability indicators. ASPICE defines them for 9
process attributes (PA). For the capability levels 1 to 3, they are defined as follows (using the
example of SWE.6 in parentheses):

 PA 1.1: Process performance process attribute (e.g., the tester is oriented in the test
process)

 PA 2.1: Process performance management process attribute (e.g. the tester plans,
supervises and controls the test activities)

 PA 2.2: Work product management process attribute8 (e.g., the tester checks the quality of
the testware)

 PA 3.1: Process definition process attribute (e.g., the person responsible for the test
process defines an organizational test strategy)

 PA 3.2: Process deployment process attribute (e.g., the tester applies the test strategy
defined in PA 3.1)

For the process execution, ASPICE defines two types of capability indicators: base practices (BP)
and information items. In addition, generic practices (GP) and resources are defined. The
assessment of the process attributes is based on the implementation level of the indicators at four
rating levels:

 N (None): not fulfilled (0% up to ≤ 15%)

 P (Partly): partly fulfilled (> 15% up to ≤ 50%)

 L (Largely): largely fulfilled (> 50% up to ≤ 85%)

 F (Fully): fully fulfilled (> 85% up to ≤ 100%)

8 work product management applies to all documented information

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 22 of 69 2025/04/30
© International Software Testing Qualifications Board

For a process to reach a certain capability level, the capability indicators must be achieved either
largely fulfilled (L) or fully fulfilled (F).

2.1.2.3 Test strategy and criteria for regression verification

ASPICE requires a test strategy (i.e., verification measures) for each test process (see section
2.1.2.1) starting with capability level 2. The test manager develops it during the test planning. Test
guidelines, project objectives, and contractual and regulatory requirements form the basis for it.

The tester is aware of early testing as a principle of testing. This also applies to the testing of
software in the automotive environment. However, another aspect comes into play here because
test environments at higher test levels are significantly more expensive. For example, for testing at
higher levels, especially developed and embedded hardware is necessary (e.g., as a prototype or
unique model). The test strategy defines the level-specific test environments, but also which tests
the tester is required to perform in which test environments.

The criteria for regression verification are an essential part of the test strategy. They specify the
details for the regression verification9. The challenge lies in the economically sensible choice of the
test cases (i.e., added value of testing). The criteria for regression verification define the test
objective and the test approach for the choice of the regression tests. For example, the choice can
be risk-based. An impact analysis helps to identify the areas the tester must focus on with
regression tests. However, the test manager may also ask the tester to repeat all automated test
cases for each release.

2.1.2.4 Testware in ASPICE

ASPICE 4.0 does not impose requirements on testware. Instead, it establishes requirements
concerning the documentation of specific information that arises during testing. For test activities,
ASPICE requires the following information items (II):

 08-60: Verification measures (e.g., simulations, dynamic tests and static tests), typically
documented in a test plan

 13-25: Verification results (e.g., documented verification logs, test reports and defect
reports)

For each information item, ASPICE defines examples of information item characteristics (IIC) and
content. They serve as an objective indicator for process execution.

ISO/IEC/IEEE 29119-3 can be used to further structure information items.

2.1.2.5 Verification measures for software unit verification

The tester verifies compliance with the software detailed design and with the functional and non-
functional requirements according to the verification measures. The measures define how the
tester provides the evidence. The tester can use combinations of static and dynamic test
techniques to verify the software units.

9 similar to the regression-averse test strategy in ISTQB

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 23 of 69 2025/04/30
© International Software Testing Qualifications Board

In SWE.4.BP.1, ASPICE requires the definition of verification measures (see section 2.1.2.4) for
the verification of software units. This allows the tester to assess the extent to which the software
unit meets its requirements. The following examples could be used as software unit verification
measures:

 Software unit test cases including test data

 Tool-supported static analysis, which assesses compliance with coding guidelines (e.g.,
MISRA-C, see section 4.1.1)

 Reviews for software units or parts of software units, which cannot be assessed by tool-
supported static analysis

If a developer changes a software unit, the tester must also evaluate this change. Therefore, the
verification measures of software units also include the criteria for regression verification. This
includes the verification of the changed code, the confirmation testing, and the repeated verification
of the non-changed parts (static and dynamic regression tests).

2.1.2.6 Traceability in ASPICE

As in the CTFL® Core Syllabus [ISTQB_FL_SYL], ASPICE additionally requires bidirectional
traceability10. This allows the testers to:

 Analyze impact, e.g., change impact analysis

 Evaluate coverage

 Track status

Moreover, this allows the tester(s) to ensure the consistency between the linked elements, textually
and semantically.

ASPICE differentiates between vertical and horizontal traceability:

Vertically: ASPICE requires that stakeholder requirements be linked across all levels to the
software units. In doing so, the link over all levels of development ensures consistency between
the related work products.

Horizontally: ASPICE requires traceability and consistency, between the work results of the
development and the corresponding test specifications and test results.

In addition, the base practice SUP.10.BP4 requires bidirectional traceability between change
requests and work products affected by the change requests. Because change requests are often
initiated by a defect, bidirectional traceability is established between change requests and the
corresponding defect reports. Because of the occasionally large number of links, a consistent chain
of tools can be helpful. This allows the tester to efficiently create and manage the dependencies.

10 In the following, the term traceability will always imply the bidirectional traceability.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 24 of 69 2025/04/30
© International Software Testing Qualifications Board

2.2 ISO 26262

2.2.1 Functional Safety and Safety Culture

2.2.1.1 Objective of functional safety for E/E systems

The functional and technical complexity of embedded systems is constantly rising. At the same
time, powerful software based electrical, and electronic systems allow new complex functionalities
such as the automation of driving functions in a car.

Due to the increasing complexity, the risk of an erroneous action happening during development is
increasing as well. The consequence can be an unrecognized defect in the system. For systems
with an inherent risk potential for life and limb, the responsible safety engineer or safety manager
therefore needs to analyze potential risks. If there is an actual risk, suitable measures need to be
identified to mitigate the possible risk impact to an acceptable risk level.

The methods for the execution of such analyses are summarized in the standards for functional
safety. The foundation standard is IEC 61508. The International Organization for Standardization
(ISO) adapted ISO 26262 from this standard, which is available in its second edition from 2018.

Functional safety involves ensuring that E/E systems operate without causing unreasonable risk
due to hazards from malfunctioning behavior. In this sense, the term is to be differentiated from
other related terms such as information security (or cybersecurity), product safety or occupational
safety.

Occupational safety and cybersecurity are not in the focus of ISO 26262. However, a lack of
cybersecurity can endanger functional safety. Both functional safety and cybersecurity contribute to
product safety.

2.2.1.2 Contribution of the tester to the safety culture

Within the product development according to ISO 26262, monitoring only your own organization’s
processes is not sufficient. All participants need to follow a cross-process approach. Everybody
must understand their impact on the development process and the safety of the final product. This
includes external partners and suppliers.

The participants must understand that their own actions do not happen independently of other
processes. Each step of development constitutes an essential contribution to both compliance with
and implementation of the safety-relevant requirements. This responsibility does not end with the
market launch. It continues until the end of the safety lifecycle.

The testers contribute to the safety culture by participating responsibly in the software development
lifecycle phases and by carrying out their work with a continuous view of the overall context of the
product development.

2.2.2 Integration of the tester in the safety lifecycle

The safety lifecycle describes safety-oriented activities during product development. It starts with
the first product idea and the identification of possible risks. After the specification of resulting
safety requirements, the implementation into a specific product follows. The safety lifecycle ends
with the disposal of the product at the end of its life.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 25 of 69 2025/04/30
© International Software Testing Qualifications Board

The safety lifecycle according to ISO 26262 goes through the following phases:

 1st phase: Concept phase

 2nd phase: Product development. This phase ends with the “release for production”.

 3rd phase: Production, operation, service and decommissioning

The tester works primarily in the first two phases. Changes to the product within the third phase led
to a return to the first or second phase, depending on their extent. Therefore, the tester also
participates in modifications. Based on the safety-related requirements, test techniques are
selected, and test cases are designed for the verification and validation of these requirements. The
tester will then perform those tasks in the respective subphases of the product development.

Test planning normally takes place within the concept phase. Adjustments to the resulting
documents (e.g., in the test plan or the test specifications) can, however, be necessary in any
phase. Test execution takes place primarily at the transitions between the individual subphases of
product development. For example, transitioning from implementation to software integration, and
then to hardware-software integration. Moreover, the testers significantly contribute to the transition
to the third phase with their test activities.

2.2.3 Structure and Testing of Specific Parts of the Standard

2.2.3.1 Design and structure of the standard [informative]

The ISO 26262 consists of 12 parts:

 Vocabulary (part 1)

 Management of functional safety (part 2)

 The phases of the safety lifecycle:

o Concept phase (part 3)

o Product development at the system-, hardware- and software level (parts 4-6)

o Production, operation, service and decommissioning (part 7)

 Supporting processes (part 8)

 ASIL-oriented and safety-oriented analysis (part 9)

 Guidelines on ISO 26262 (part 10)

 Guidelines on application of ISO 26262 to semiconductors (part 11)

 Adaptation of ISO 26262 for motorcycles (part 12)

Apart from part 1, part 10 and part 11, each part contains:

 A general introduction

 The scope of application

 Normative references

 Requirements for compliance with the standard

These are followed by the specific topics of the corresponding part. The structure of their
description is the same in each part. The activities that are to be carried out are described via a
recurring structure in all parts:

 Objective

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 26 of 69 2025/04/30
© International Software Testing Qualifications Board

 General information

 Introductory information

 Prerequisites

 Further supporting information

 Requirements and recommendations

 Work results

2.2.3.2 Relevant parts of ISO 26262 for the tester

For the software tester, the software verification and, at least partly, the system validation, are
paramount. Apart from part 1 (vocabulary), several other parts are also of special interest: parts 4
and 6 provide detailed information and requirements regarding recommended software verification
measures. This applies to the selection, design, implementation, and execution of the
corresponding verification measures.

In doing so, these parts focus on the test and verification-specific aspects of the system level (i.e.,
part 4, including safety validation) and the software level (i.e., part 6). If hardware-specific aspects
are also relevant for this work, the tester will find those in part 5. Aspects concerning both
hardware and software are considered within the scope of the hardware software interface (parts
4-6).

Part 8 has a special role as it describes the process-specific characteristics of verification at all test
levels. In addition, it contains requirements for supporting processes that are critical for ensuring
standardized processes, such as configuration management and the qualification of tools.

In part 12, the tester will find adapted method tables based on the newly introduced Motorcycle
Safety Integration Level (MSIL) assessment for motorcycle projects.

2.2.4 The Influence of Criticality on the Extent of the Test

2.2.4.1 The criticality levels of ASIL

The ASIL is a measure for the required risk reduction through measures of functional safety. Such
measures can be, for example, an independent safety function for monitoring an E/E system or the
implementation of specifically defined methods. For higher risk levels, more elaborate measures
can be necessary.

At the beginning of the project, a team of experts performs a hazard analysis and risk assessment
(HARA) for the product. For each hazard identified by this analysis, the team determines an ASIL
using the methodologies defined in the standard. In the next step, the team defines safety goals
and safety requirements. These have the same ASIL as the underlying hazard.

ISO 26262 defines four levels: from ASIL A for low, up to ASIL D for high safety requirements.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 27 of 69 2025/04/30
© International Software Testing Qualifications Board

If the results of the hazard analysis and risk assessment lead to requirements below ASIL A, then,
in terms of the standard, those are not safety relevant. For such requirements, there are not any
functional safety-related actions needed, and it is enough to cover such requirements using
already existing quality management systems (QMS). For practical reasons - those requirements
are often marked "QM" - to distinguish them from ASIL-related ones.

2.2.4.2 Influence of ASIL on test techniques, test types and the resulting test scope

The determined ASIL directly influences the extent of the tests to be carried out by the tester.
Depending on the level of the ASIL, the ISO 26262 standard recommends the execution of
different measures or packages of measures. In doing so, the standard recommends more
extensive and detailed measures for higher ASIL. For lower ASIL levels, the execution of the
specified measures is often optional.

ISO 26262 specifies three levels of recommendations: no recommendation, recommended, and
highly recommended. The general understanding of these recommendation levels is that where a
method is listed as “highly recommended”, it must be applied, while a method listed as
“recommended” should be applied or a rationale for not using it shall be given. In the case of “no
recommendation”, the standard does not provide any recommendation for or against the use of the
measure in question. It can be used as a supportive measure without any concern. However, its
execution does not replace the measures recommended or highly recommended by ISO 26262.

For the tester, this means that the standard recommends specific test techniques and test types for
safety-relevant systems depending on the ASIL. The tester can only decide freely to the extent that
the standard allows for the special case. For example, the use of equivalence partitioning and
boundary value analysis are merely recommended for ASIL A. On the other hand, for an ASIL B or
higher, those techniques are highly recommended (see section 2.2.5).

The ASIL is not a characteristic of the entire product. It is tied to a specific safety goal and safety
requirements derived from it. For the same product, safety requirements with different ASILs can
therefore result in significantly different test efforts. This must be taken into consideration by the
tester when planning the test scope.

2.2.5 Application of Content from the CTFL® in the Context of ISO 26262

ISO 26262 offers the tester specific recommendations for test activities in the form of method
tables. These can be found in parts 4, 5, 6, 8 and 12. Apart from functional safety specific
recommendations for test processes and test activities, they also include the test techniques to be
used.

In this context, the standard uses the term “method” related to all applicable test techniques or test
activities. At this point, the functional safety terminology differs slightly from the terms of the
ISTQB®. For the tester, the following methods of the ISO 26262 are of special interest:

 Test techniques (e.g., equivalence partitioning and boundary value analysis)

 Techniques for test execution (e.g., simulation or prototype of a component or system)

 Test types (e.g., non-functional tests such as performance testing and endurance testing)

 Test environments (e.g., hardware-in-the-loop and vehicles)

 Static test techniques (e.g., reviews and static analysis)

The method tables define the methods recommended by the standard for each ASIL level.

They are always designed in the same structure:

 ASIL A ASIL B ASIL C ASIL D

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 28 of 69 2025/04/30
© International Software Testing Qualifications Board

1 Method x o + ++ ++

2 Method y o o + +

3a Method z1 + ++ ++ ++

3b Method z2 ++ + o o

Table 1: Example of a method table

For each method, depending on the ASIL level, it is documented whether its use is recommended
(+) or even highly recommended (++). For methods marks as optional (o), there is no
recommendation provided by the standard for or against its use.

ISO 26262 also lists equivalent alternative methods in the method tables using letter suffixes (in
the example above, rows 3a and 3b). Here, the tester needs to choose a suitable combination to
be able to verify the relevant requirements in an ASIL-compliant way. The tester must justify the
usefulness of the selected combination.

In the case of methods without alternatives (e.g., rows 1 and 2), this option of choice is not
permitted. Here, the tester must apply all methods that are highly recommended for the respective
ASIL level.

For example, when verifying a requirement according to ASIL C, the following methods are derived
from table 1:

 Method x: highly recommended, so it must be applied when developing in accordance with
ISO 26262

 Method y: recommended, so it should be applied or a rationale for not applying the method
has to be given

 Methods z1 and z2: here, at least method z1 should be chosen as it has the highest level
of recommendation for ASIL C

ISO 26262 also allows the tester to use other methods than the ones listed in the method tables. In
this case, the method chosen must be justified for its usefulness and suitability.

Generally, ISO 26262 allows to customize the safety activities to fit the specific needs of a
particular project ("tailoring"). For test-related activities, this means that the test strategy and test
approach can be tailored to the specific project.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 29 of 69 2025/04/30
© International Software Testing Qualifications Board

2.3 AUTOSAR

AUTOSAR stands for ‘AUTomotive Open System Architecture’. AUTOSAR is both the architecture
and the development partnership behind it. The AUTOSAR partnership was established in 2003
and includes mainly OEMs and suppliers from the automotive industry. The goal of the partnership
is to jointly develop and establish an open industry standard for automotive software architecture.
Today, AUTOSAR is a standard established globally for automotive E/E systems. Therefore, the
tester certainly encounters AUTOSAR work products. For the tester, it is important to know the
project objectives of AUTOSAR, the general structure of the AUTOSAR architecture, and their
influence on the work of the tester.

2.3.1 Project Objectives of AUTOSAR

The following are the project objectives of AUTOSAR:

 Support the portability of software

 Support the scalability across different architectures and hardware variants

 Support different functional domains

 Support data exchange with non-AUTOSAR systems

 Define an open architecture for automotive software

 Support the development of dependable systems characterized by availability, reliability,
safety, integrity, maintainability and usability

 Support the collaboration between partners

 Support applicable international automotive standards and state-of-the-art technologies

2.3.2 General Structure of AUTOSAR [Informative]

There are two architecture variants in AUTOSAR: Classic and Adaptive. For simplicity, this
syllabus focuses on AUTOSAR Classic. An AUTOSAR system typically consists of several
electronic control units (ECUs). On each ECU, the software architecture of AUTOSAR Classic
consists of three layers:

 The top application layer is hardware independent. A component of this layer is called
AUTOSAR software component (SW-C).

 The bottom hardware-oriented layer is the standardized basic software (BSW).

 The intermediate abstraction layer is the AUTOSAR runtime environment (RTE). As a kind
of middleware, it implements the data flow between SW-Cs as well as between SW-Cs
and BSW.

In the AUTOSAR methodology for developing automotive systems, OEMs and suppliers exchange
system information using description files based on AUTOSAR templates (so-called “arxml-files”):

 The “ECU configuration description” includes data for the integration of the SW-Cs on a
single ECU.

 The “system configuration description” includes data for the integration of all ECUs in a
vehicle.

 The “ECU extract” includes the data from the “system configuration description” for a
single ECU.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 30 of 69 2025/04/30
© International Software Testing Qualifications Board

2.3.3 Influence of AUTOSAR on the Work of the Tester

AUTOSAR influences the work of the tester, especially at the following test levels12:

 Software component testing and software integration testing in a virtual environment (e.g.
software-in-the-loop): Using a simulation of the BSW and the RTE, the tester can test a
SW-C early.

 Software component testing and software integration testing in the real ECU: Here, the
tester gets access to the communication on the RTE. Thus, the tester can observe and
control the behavior of a SW-C at runtime.

 The AUTOSAR acceptance test is a test of the software system which ensures the
compliance of the AUTOSAR functionality at the communication and application levels.
The execution of the AUTOSAR acceptance test is optional.

 System integration testing: integration of various ECUs, for example, to test functionality
whose implementation is distributed over various ECUs. By simulating not yet
implemented functionality, the tester can assess the system behavior early.

2.4 Comparison of ASPICE, ISO 26262, and CTFL®

2.4.1 Objectives of ASPICE and ISO 26262

There are several standards that propose requirements for product development. Typically, these
highlight different aspects in the development. In this subsection ISO 26262 and ASPICE are
compared regarding their objectives.

ISO 26262 has the objective of avoiding risks from failures in both hardware and software by
providing suitable requirements and processes. For the development of E/E systems, it defines the
requirements for the test processes and methods13 to be used by the tester. These depend on the
ASIL level of the item.

ASPICE serves the purpose of determining the capability of the product development process
within the framework of assessments. To do so, ASPICE defines assessable criteria for these
processes. In contrast to ISO 26262, these are independent of the product’s ASIL level.

2.4.2 Comparison of Test Levels between ASPICE, ISO 26262, and CTFL®

Both ISO 26262 and ASPICE describe test levels. However, these are not fully consistent with the
test levels from CTFL®. Therefore, for an efficient and effective collaboration within the
development team, testers should have a common understanding of all test levels.

The term “system” used In ASPICE, and the terms “system” and “item” used in the ISO 26262 refer
to a product consisting of hardware and software components. The CTFL-Syllabus
[ISTQB_FL_SYL], however, refers to software only when using the term “system”. Therefore, the
test levels of ISTQB® can be mapped to the test levels in ISO 26262 and ASPICE as follows. Note
that in the ISO 26262 column the numbers in parenthesis refer to a specific part of the ISO 26262
standard and to a particular chapter therein. In the ASPICE column the parenthesis shows the
respective process ID.

12 for an overview of test levels see section 2.4.2
13 for methods in ISO 26262, see section 2.2.5

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 31 of 69 2025/04/30
© International Software Testing Qualifications Board

ISTQB CTFL® ISO 26262:2018 ASPICE 4.0

Acceptance testing Safety validation (4-8)14 Validation (VAL.1)15

System of systems
testing16

System and item integration and
testing
(4-7)17

System verification (SYS.5)

System integration
testing

System integration and integration
verification (SYS.4)

System testing Testing of the embedded software

(6-11)18
Software verification (SWE.6)

Component
integration testing

Software integration and verification
(6-10)

Software component verification and
integration verification (SWE.5)

Component testing Software unit verification (6-9) Software unit verification (SWE.4)

Table 2: Assignment of the test levels

In the ISTQB CTFL® Syllabus [ISTQB_FL_SYL], most test techniques can be used at different test
levels. Similarly, ASPICE does not generally assign any test techniques to test levels. Therefore,
both leave the choice to the testers. In the ISO 26262, there are individual method tables for each
test level (see sections 2.2.4 and 2.2.5). These provide the tester with recommendations of test
techniques based on the ASIL level.

14 The safety validation only covers parts of an acceptance test per ISTQB.
15 Validation (VAL.1) only covers parts of an acceptance test per ISTQB.
16 The testing of several heterogenic distributed systems
17 Item integration and test includes three phases: the integration and the testing of hardware and software of an element,
the integration and the testing of all elements belonging to the item, and the integration and the testing of the item in
connection with other items in the vehicle.
18 Test of functional safety software (system) requirements executed on target hardware

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 32 of 69 2025/04/30
© International Software Testing Qualifications Board

3 Testing in a Virtual Environment – 160 minutes
Keywords

environment model, hardware-in-the-loop, model-in-the-loop, software-in-the-loop

Domain Specific Keywords

closed-loop system, open-loop system

Learning Objectives for Chapter 3

3.1 Test Environment in General

AuT-3.1.1 (K1) Recall the motivation behind a test environment in automotive development

AuT-3.1.2 (K1) Recall the general parts of an automotive specific test environment

AuT-3.1.3 (K2) Recall the differences between closed-loop systems and open-loop systems

AuT-3.1.4 (K1) Recall the essential functions, databases and protocols of an ECU

3.2 Testing in XiL Test Environments

AuT-3.2.1.1 (K1) Recall the structure of a MiL test environment

AuT-3.2.1.2 (K2) Explain the application area and the boundary conditions of a MiL test
environment

AuT-3.2.2.1 (K1) Recall the structure of a SiL test environment

AuT-3.2.2.2 (K1) Recall the application areas and the boundary conditions of an SiL test
environment

AuT-3.2.3.1 (K1) Recall the structure of a HiL test environment

AuT-3.2.3.2 (K2) Explain the application areas and the boundary conditions of a HiL test
environment

AuT-3.2.4.1 (K2) Summarize the advantages and disadvantages of testing using criteria for the
XiL test environments

AuT-3.2.4.2 (K3) Apply criteria for the assignment of a given extent of the test to one or more
test environments

AuT-3.2.4.3 (K1) Outline the XiL test environments in the V-model

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 33 of 69 2025/04/30
© International Software Testing Qualifications Board

3.1 Test Environment in General

3.1.1 Motivation for a Test Environment in Automotive Development

The tester faces special challenges. On one hand, the tester is expected to start testing as early as
possible to find defects early in the development process. On the other hand, the tester needs a
realistic environment to test the system and to find the defects that would appear in the completed
product. The tester can solve this conflict by using suitable test environments that match the
different development phases. In doing so, the tester can implement and execute individual test
tasks before the completely produced or developed ECU is available. By using various test
environments, the tester can simulate situations that are hard to reproduce in actual vehicles, such
as short circuits and network communication overloads, short circuits and open circuits in wiring
harnesses, or overloads in network communications.

3.1.2 General Parts of a Test Environment

For the tester to be able to perform testing, they need a test environment in which the missing
parts are simulated. This environment helps the tester to control the inputs of the test object and to
observe the test results, also called ‘point of control’ (PoC) and ‘point of observation’ (PoO).
According to ISO/IEC/IEEE 29119-1, a test environment consists of the following parts:

 Hardware of the test environment (e.g., a control computer, a real-time capable computer
when needed, test bench, and development kit)

 Software of the test environment (e.g., operating system, simulation software, and
environment models)

 Facilities of communication (e.g., network access and a data logger)

 Tools (e.g., oscilloscope and measuring tools)

 Laboratory (e.g., protection from electromagnetic radiation and noise)

An important part of the test environment is the environment model. Models are key elements of
the virtual test environment. They represent aspects of the real world such as the combustion
engine, transmissions, vehicle sensors and ECUs or even the driver and road conditions. The test
environment also provides different access points. These allow the tester to observe and measure
the test object, and to influence or control it when required.

3.1.3 Differences Between Closed-loop and Open-loop Systems

The test environment is used to control the input interfaces of the device under test and monitor its
output through the output interfaces. Afterwards, the behavior at the output interfaces is analyzed.
A success occurs when the actual results match the expected results.

Generally, there are two types of control systems, closed-loop and open-loop. The difference relies
on the way the ECU reacts to its environment, and this requires different simulation requirements
for the virtual test environment.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 34 of 69 2025/04/30
© International Software Testing Qualifications Board

3.1.3.1 Closed-loop System

The stimulation in a closed-loop system, also known as in-the-loop, takes the output of the test
object into consideration. This is done via an environment model, which collects the outputs and
forwards them directly or indirectly to the input of the test object. Therefore, a control loop is
created in the test environment.

Closed-loop systems are used more often to test controllers. By using this, complex functions can
be tested such as motor and gear controls and driver assist systems such as the anti-lock braking
system (ABS®) or the vehicle dynamics control (VDC®).

3.1.3.2 Open-loop System

In an open-loop system, the outputs of the system have no relation to the inputs. The system does
not have a feedback loop. In this case, the inputs of the test object are directly defined by the tester
in the test procedure.

The application case for open-loop and closed-loop systems depends strongly on the test object
behavior. Closed-loop systems have outputs that influence inputs, creating feedback, whereas
open-loop systems lack this feedback mechanism. If the test object has a reactive behavior or if it
mirrors a state machine, an open-loop system is preferred. In the interior and chassis electronics
there are many examples of open-loop systems (e.g., lights and switches).

3.1.4 Databases and Communication Protocols of an ECU

An ECU in the automotive environment functions as an embedded system, which consists of
hardware and software. The ECU receives different analogue and digital inputs, which constantly
collects environmental data in the form of voltage, current and temperature. Moreover,
communication bus systems offer additional data from either sensors or other control units.
Communication bus systems provide further information to the control unit, coming from sensors or
other ECUs, which either collect and process the information themselves or generate them. The
test object manages the data in the memory to process the output action, information or data. The
generated outputs are also carried out via analogue and digital output pins, bus systems or
diagnostic interfaces.

The databases are data warehouses and define the input and output signals of the control unit.
These data also include descriptions, control units and conversion formulas of the signals.

The communication protocols describe the data exchange via the corresponding physical
interfaces. These protocols define which voltage or bit sequence represents which value of the
signal.

The selection of databases and communication protocols depends on the ECU’s function. For
example, to access diagnostic functions in the control unit, the tester needs the information about
the used database (e.g., application programming interface specification (Association for
Standardization of Automation and Measuring Systems (ASAM) MCD-3 D) and service-oriented
vehicle diagnostics (ASAM SOVD)) and the communication protocol (e.g., unified diagnostic
services per ISO 14229, and AUTOSAR specification (SOME/IP)). Other automotive-specific
databases are defined in the ASAM and AUTOSAR standards.

3.2 Testing in XiL Test Environments

In the automotive industry, the following types of XiL19 test environments are used:

19 The letter X in XiL is a placeholder for the specific test environments in the given list.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 35 of 69 2025/04/30
© International Software Testing Qualifications Board

 Model-in-the-loop (MiL)

 Software-in-the-loop (SiL)

 Processor-in-the-loop20 (PiL)

 Hardware-in-the-loop (HiL)

 Vehicle-in-the-loop21 (ViL)

The tester should become familiar with the test environments (i.e., MiL, SiL and HiL) and
understand them. The following paragraphs look deeper into the structure and the application
areas of the different test environments. XiL in this sense stands as a generic term for the different
test environments.

3.2.1 Model-in-the-loop (MiL)

3.2.1.1 Structure of a MiL test environment

In a MiL test environment, the test object is available as a model. This model is executable but not
compiled for special hardware. Developers create models using special modelling tools. The tester
needs a test environment to be able to execute and test those models. This is usually implemented
in the same development environment as the test object itself. This test environment can
additionally contain an environment model. The tester can control and observe the test object via
access points. The access points can be placed arbitrarily in the model of the test object and in the
environment model. The model of the test object is connected to the environment model and can
easily be implemented and used as a closed-loop system.

3.2.1.2 Application areas and boundary conditions of a MiL test environment

With a MiL test environment, the tester can test the functional system design. During the
development (e.g., the general V-model) the tester can also test single components up to an entire
system. To execute the test, the tester needs a computer and the corresponding simulation
software including the environment model. The environment model becomes more complex as the
scope of functions of the test object increases. The aspects of reality and environmental factors are
very complex. The execution times for the models also increase disproportionately. Therefore, the
effort to implement a MiL test environment becomes no longer worthwhile from a certain phase of
the development.22

20 This test environment is not considered in this syllabus and is purely informative.
21 This test environment is not considered in this syllabus and is purely informative.
22 This is also valid for all other XiL environments.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 36 of 69 2025/04/30
© International Software Testing Qualifications Board

By using a MiL test environment, the tester can test the functional suitability of models over all
development levels at an early phase of development (i.e., the left side of the V-Model23). But it is
not common to enable the environment model to simulate bus or diagnostic functions or physical
behavior such as cable breaks or shorts. These tasks can be carried out more easily and at less
cost with other test environments.

In a MiL test environment, test execution does not take place in real time. As all components are
available as a model, the test execution runs in simulation time. The more complex a system, the
more execution time or power the computer needs to provide all necessary information. The
duration of the simulation in smaller systems is shorter than the execution in real time. However, a
big advantage is that the tester can pause the simulation at any time for detailed analysis and
evaluation.

3.2.2 Software-in-the-loop (SiL)

3.2.2.1 Structure of a SiL test environment

The test object is compiled for a specific SiL test environment. This means the source code has
been compiled for a certain computer architecture. This machine code is readable by the test
environment as it consists of binary data sets. For the test environment to be able to access
signals, a wrapper24 is necessary. A wrapper is additional software that provides access to inputs
that might not be accessible if the test object communicates with the environment directly and not
through the wrapper. Therefore, the tester can control software signals and observe them. The
wrapper defines the access points to the test object but does not perform its functional tasks.

An environment model is needed for the simulation. The test object is connected to the test
environment with the help of the wrapper. The test execution is carried out on a computer without
special hardware. The tester needs a software tool that can create a wrapper for the test object
with access points to the test environment.

3.2.2.2 Application areas and boundary conditions of a SiL test environment

If the developer generates source code based on a model, the real behavior of the software can be
different than the expected behavior. This can be caused by different data types in the model,
mostly floating point, and in the compiled software code, mostly fixed point, but also by different
memory spaces. These anomalies in the expected behavior can be tested for the first time in a SiL
test environment. The tester can use a test approach like back-to-back testing (see section 4.2.2)
to compare the behavior.

The tester runs the tests, analogous to the MiL test environment, in simulation time. Depending on
the calculation technique and the complexity of the environment model, this simulation time can be
shorter or longer than in real time. The tester can pause the test execution at any time for detailed
analysis and evaluation. Functional suitability tests, interface tests and regression tests are very
common test types that can be evaluated in a SiL test environment. On the other hand,
performance efficiency tests and reliability tests are unusual. These quality characteristics are
mostly affected by the target hardware.

23 Further descriptions of the content of the V-model can be found at: Sommerville, I. (2011). Software Engineering (9.
Auflage). Pearson Education.
24 Detailed information on software architectures can be found at: Balzert, H., Schröder, K., & Kern, U. (2022). Grundlagen
der Softwaretechnik (6. Aufl.). Carl Hanser Verlag.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 37 of 69 2025/04/30
© International Software Testing Qualifications Board

3.2.3 Hardware-in-the-loop (HiL)

3.2.3.1 Structure of a HiL test environment

If the test object is available as a prototype or if it is already completely developed, the tester can
use a HiL test environment to execute tests. The typical parts of a HiL test environment are:

 A power supply to set different supply voltages

 A real-time capable computer for the environment model to run on

 Several real parts that are not implemented in the environment model

 A signal processing unit of signal type and signal amplitude

 A fault insertion unit (FIU) (see section 4.2.3) for the simulation of cable breaks and shorts

 A breakout box as an additional access interface in the cable harness

 A remaining bus to simulate the non-existent bus participants

3.2.3.2 Application areas and boundary conditions of a HiL test environment

The access points in a HiL test environment are diverse. The tester must be aware that using the
wrong access points to the test object can render the test results useless. Knowing the different
access points and their connections in the HiL test environment enables effective tests to be
implemented, executed and evaluated.

The HiL test environment is more complex than the previously mentioned test environments (i.e.,
MiL and SiL) due to its several parts. The tester must master this complexity to address test tasks.
The HiL test environment can be used for component tests, integration tests and system tests. The
objective is, among other things, to find functional and non-functional defects in the software and
hardware.

With the help of HiL test environments, different test levels can be analyzed. If the test object is a
single ECU, it is called a component25 HiL. If the test object is a combination of several ECUs, it is
called a system HiL. The tester uses the component HiL to test functions of the control unit. In the
system HiL, the focus is on testing the data exchange between the ECUs and the system test.

In contrast to the previously mentioned test environments (i.e., MiL and SiL) the simulation time in
a HiL test environment always runs in real time. The reason for this is that the software is running
on real hardware. Pausing or stopping is no longer possible in this test environment. Therefore, the
test environment includes a real time capable computer that can collect and serve all relevant
signals within a predetermined period of time.

3.2.4 Comparison of the XiL Test Environments

3.2.4.1 Advantages and disadvantages of testing in the XiL test environments

The tester understands the attributes of the different test environments. In doing so, the tester can
understand and assess the advantages and disadvantages of testing in each environment. The
criteria are shown in table 3.

25 The term component is in this case used for an ECU in the context of a E/Esystem.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 38 of 69 2025/04/30
© International Software Testing Qualifications Board

Criteria HiL Test Environment Impact MiL SiL HiL

Closeness to reality Reality is simulated, many characteristics are
abstracted, and the focus is on the structures
and logic.

Low + o o

Compiled real software can be executed
without hardware.

Low to
medium

o + o

Integrated system, able to run High o o +

Time and effort in
debugging

 Defects are found in the model of the test
object (model adjustment).

Low + o o

Defects are found in the programmed
software (software adjustment).

Medium o + o

Defects are found in the system level
(system adjustment).

High o o +

Effort for
implementation and
maintenance

Create environment model Low + o o

Create environment model and wrapper Medium o + o

Create environment model and wire the
hardware components

High o o +

Effort for test
preparation

Environment can set up quickly. Low + o o

Environment can set up quickly. Medium o + o

Design, implementation and evaluation of the
tests require high effort.

High o o +

Necessary level of
maturity of the test
object

System models are simulated. Low + o o

Initial functions are tested with the target
software.

Medium o + o

One or more executable ECUs or partial
systems are tested as entirely as possible

High o o +

Necessary level of
detail of the test basis
(specification)

Models are tested that partially cover an
incomplete specification.

Medium + o o

The relevant information on the software
level must be available (e.g., detailed
component specification).

Medium
to high

o + o

Requirements can be tested on the system
level with a complete system specification

High o o +

Access to the test
object

All signals in a model can be observed and
controlled.

High + o o

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 39 of 69 2025/04/30
© International Software Testing Qualifications Board

Criteria HiL Test Environment Impact MiL SiL HiL

Only the signals available in the wrapper can
be observed and controlled.

Medium o + o

Only the signals available in the hardware or
communication protocols can be observed
and controlled.

Low o o +

Table 3: Criteria and their impact on MiL, SiL and HiL test environments

3.2.4.2 Apply criteria for the assignment of a given extent of the test to one or more test
environments

In the following table test objectives are described in detail and assigned to suitable test
environments.

Test objective Description by Examples MiL SiL HiL

Test customer
requirements

Correct provision of the required functionality. This
includes the correct processing of inputs, the correct
reaction to inputs and the correct data output at the exit
point.

O O +

Test mechanisms for
defect detection and
handling

• Detection and handling of random hardware defects
• Detection and handling of software defects
• Transfer to a safe state after defects are detected, e.g.,
 deactivation of a system

+ + +

Test reaction to
configuration data

Check the influence of configuration data on the behavior
of the test object

O + +

Test diagnostic
functions

Correct provisioning of the required diagnostic
functionality, such as defect detection, defect activation
and reset requirement, and defect activation in the defect
memory (e.g., on-board diagnostics or in the garage)

- + +

Test interaction at
interfaces

Check internal and external interfaces of the test object O + +

Prove usability The test object should meet the user’s usability
requirements.

- O +

Key: + recommended, o possible, - not sensible

Table 4: Comparison of test types in MiL, SiL and HiL test environments

This table shows that test environments can be suitable for certain test objectives. This diversified
approach becomes evident especially in the testing of the mechanisms for defect detection and
handling. In accordance with shift left the general conclusion is that basic requirement and design
defects are already detected early through testing. Therefore, MiL is used for detection of general
design defects, SiL mostly for technical software defects and HiL for technical hardware/software

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 40 of 69 2025/04/30
© International Software Testing Qualifications Board

defects. Furthermore, it is important to note that apart from the evidence of reliability, performance
efficiency and usability, all test types focus on the functional suitability of the test object.

In the test strategy, the test manager assigns the test scope to several different test environments.
The testers should synchronize regularly to ensure efficient and accurate testing across different
XiL environments. If applicable, it is recommended to align on test objectives, avoid duplication,
and verify that each test is executed in the most suitable environment for its development phase.
This collaboration helps prevent resource conflicts, ensures consistency in coverage, and reduces
the risk of testing at inappropriate test levels. By fostering communication and leveraging shared
tools or frameworks, teams can optimize test strategies and maintain a seamless progression
through the testing lifecycle. By combining the criteria out of tables 3 and 4 the test manager can
choose the optimal test environment.

3.2.4.3 Classification of the XiL test environments in the V-model

Technical system design is on the left-hand side of the V-model. The tester can test this design
with a MiL test environment. If the model and the test environment are further developed, the tester
can also execute component tests and integration tests with this test environment.

The tester can use a SiL test environment if single components of the test object are programmed
and compiled. Typical tests for a SiL test environment are component tests and integration tests.
These can be found on the right-hand side of the V-model.

In system tests, certain functionalities of the test object have been entirely developed. The tester
can execute the system test with a HiL test environment.

With a correct assignment of the test environment to the test levels, the entire test process can be
optimized according to the following three aspects:

Minimizing the product risks

 Finding test level specific failure types (e.g., performance efficiency at the system level within a
HiL environment)

Minimizing the test cost

 For every test level, the adequate test types are required

 Transfer of tests to earlier, less costly and virtual test levels

Conformity to standards

 In the method tables of the ISO 26262 standard, test environments are recommended
depending on ASIL

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 41 of 69 2025/04/30
© International Software Testing Qualifications Board

4 Static Testing and Dynamic Testing – 230 minutes
Keywords

back-to-back testing, fault injection, requirements-based testing

Learning Objectives for Chapter 4

4.1 Static Testing

AuT-4.1.1 (K2) Explain the purpose and requirements of the MISRA-C guidelines with the
help of examples

AuT-4.1.2 (K3) Apply requirements review using quality characteristics of the
ISO/IEC/IEEE 29148 standard that are relevant to testers

4.2 Dynamic Testing

AuT-4.2.1 (K3) Design test cases to achieve modified condition/decision testing coverage

AuT-4.2.2 (K2) Explain the use of back-to-back testing by giving examples

AuT-4.2.3 (K2) Explain fault injection testing by giving examples

AuT-4.2.4 (K1) Recall the principles of requirements-based testing

AuT-4.2.5 (K3) Apply context dependent criteria for the choice of suitable and necessary test
techniques and test approaches

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 42 of 69 2025/04/30
© International Software Testing Qualifications Board

4.1 Static Testing

Introduction

Static testing is examining work products of software development without executing them. This
includes evaluation by people performing reviews and tool-supported static analysis.

4.1.1 The MISRA-C Guidelines

It is the state of the art for source code to comply with coding guidelines . The ISO 26262 standard
also recommends adherence to coding guidelines for safety-relevant software26. Coding guidelines
help avoid anomalies in the code, which could lead to defects. At the same time, they support
maintainability and portability.

MISRA-C provides coding guidelines for the C programming language and is commonly used in
automotive software projects. It defines two different types of guidelines: rules and directives.

 Rules are verifiable by static analysis tools. Example rule: “The source code shall not
include nested comments.”

 Directives are not entirely verified by static analysis tools. They refer to details of the
development process or documents outside of the software. Example directive: “The
developer shall sufficiently document the implemented behavior.”

Each guideline is categorized at one of the following three levels of obligation:

 “advisory” guidelines must be followed by the developer if the effort is reasonable.

 “required” guidelines must be followed by the developer; exceptions are possible but must
be officially approved (e.g., by quality management)

 “mandatory” guidelines must be followed by the developer; there are no exceptions.

Organizations may individually raise the level of obligation for a guideline but may never lower it.

4.1.2 Quality Characteristics for Requirements Reviews

Specifications are the basis for development and testing. Therefore, defects in specifications lead
to cost and time-intensive follow up activities. This applies especially if defects are only detected in
late development phases such as acceptance testing or in operation. Reviews are an effective
measure to find defects in specifications early and consequently to fix them early and at low cost.

During test analysis, the tester must check the specifications for the test object, especially
regarding their suitability as a test basis. Quality characteristics help the tester during the review of
the specifications to focus and find as many defects as possible. ISO 29148:2018 includes quality
characteristics for single requirements and for sets of requirements.

26 See also [ISO 26262:2018] Part 6-5.4.3

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 43 of 69 2025/04/30
© International Software Testing Qualifications Board

Quality characteristics from ISO 29148:2018 relevant for testers include:

 Verifiable: Each requirement can be proven to be realized correctly.

 Unambiguous: Each requirement contains clear test conditions.

 Consistent: Each requirement is consistent with all other requirements.

 Complete: Each requirement does not leave any room for interpretation and is not built
upon implicit knowledge or knowledge from experience.

 Singular27: No requirement can be divided into meaningful partial requirements.

In preparation for a requirements review, the tester can derive a review checklist with checklist
items from these quality characteristics. These checklist items must be more specific than simply
naming the quality criteria, which are too abstract. For example, a checklist item for consistency
could be “Are terms used consistently over all requirements?”. In the review of the specification,
the tester must answer the checklist items to the best of their knowledge.

According to ISO 29148:2018, requirements should also be feasible, appropriate, correct,
conforming, comprehensible, and necessary. However, it is usually difficult for the tester to
evaluate these quality characteristics.

27 singular is also known as atomic

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 44 of 69 2025/04/30
© International Software Testing Qualifications Board

4.2 Dynamic Testing

4.2.1 Modified Condition/Decision Testing

The test techniques described here are part of the white-box test techniques. For further details
see also syllabus for Technical Test Analyst [ISTQB_ALTTA_SYL]). The tester derives the test
cases directly from the structure of the test object (e.g., source code).

In decision testing, test cases are designed to execute all possible decision outcomes, i.e., the
‘true’ and ‘false’ results of each decision. A decision consists of one or more conditions, each of
which can evaluate to ‘true’ or ‘false’. The decision outcome is determined by the logical
combination of these condition values.

If a decision consists of one condition, decision testing and condition testing achieve the same
coverage. However, for decisions with multiple conditions, more detailed test techniques are
available, which are described as follows:

 Condition testing (test technique A in table 5): The tester designs test cases with the
objective of covering the true/false outcomes of each individual condition. With a poor
choice of test data (see table 5), 100% condition coverage can still be achieved, but not full
coverage of all the decision outcomes. For both test cases TC1 and TC2, the individual
conditions B1 and B2 are exercised as both true and false, and the decision outcomes
evaluate to 'false'.

 Multiple condition testing (test technique B in table 5): The tester designs test cases with
the objective of covering all combinations of values related to the individual conditions. If
every combination of values is tested, each decision outcome is tested as well.

 Modified condition/decision testing (MC/DC) (test technique C in table 5): This is like
multiple condition testing (B). However, the test technique only considers combinations in
which individual conditions (B1, B2) independently influence the decision outcome. In the
case of TC4, changing either B1 or B2 from ‘false’ to ‘true’ individually does not change the
decision outcome. (i.e., it remains ‘false’). 100% MC/DC coverage can be achieved by
using test cases TC 1, TC 2 and TC 3; it is not necessary to consider TC 4.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 45 of 69 2025/04/30
© International Software Testing Qualifications Board

Table 5 shows an example of the necessary test cases for 100% coverage depending on the test
technique chosen:

 Individual conditions Decision outcome for
the expression:
E = B1 AND B2

Test technique

Test case B1 B2 A B C

TC 1 B1=TRUE B2=FALSE E =FALSE X X X

TC 2 B1=FALSE B2=TRUE E=FALSE X X X

TC 3 B1=TRUE B2=TRUE E=TRUE X X

TC 4 B1=FALSE B2=FALSE E=FALSE X

Table 5: Comparison of the test techniques condition testing (A), multiple condition testing (B) and
modified condition/decision testing (MC/DC test) (C)

The example shows the limits of these test techniques: In the case of condition testing (A), despite
a condition coverage of 100%, the tester takes the risk of only covering one decision outcome. A
better choice of test cases would correct this by using test cases TC 3 and TC 4.

With the use of multiple condition testing (B) the tester can cover all possible inputs and outputs.
However, the number of tests to be executed is the highest for these test techniques.

By using modified condition/decision testing (C), the tester can achieve complete coverage of all
single conditions and all decisions with a fewer number of tests compared to multiple condition
testing.

4.2.2 Back-to-Back Testing

Back-to-back testing is a test approach in which a test object is tested using a pseudo-oracle to
generate expected results. To do this, the tester executes the same test case on all variants and
compares the test results. If the test results are identical, the test has passed. If the test results
differ, the cause of the detected difference is analyzed.

The test objects must be based on the same requirements in terms of content. Only then can they
demonstrate comparable behavior. While these requirements are typically used as a basis for
deriving test inputs, they do not serve as a test oracle to define the expected results. Instead, in
back-to-back testing, the behavior of one test object is compared with that of another using one as
a pseudo-oracle for the other. In this way, the test is expected to reveal unintended differences –
even very slight ones – between the test objects or their environments.

In the simplest case, the test objects of back-to-back testing are different versions of the same
software. In this case, an earlier version of the test object serves as pseudo-oracle for the back-to-
back testing, like a regression test. Another alternative is the comparison of an executable model
with the manual or automated generated code. In this case, it is a form of model-based testing, in
which the executable model also serves as pseudo-oracle. This test approach is therefore very
suitable for automated test design. Here, the tester derives not only the expected result from the
model, but also automated test cases.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 46 of 69 2025/04/30
© International Software Testing Qualifications Board

4.2.3 Fault Injection Testing

Fault injection testing is a test approach designed to assess the response of a component or
system to adverse conditions (e.g. a defect - also referred to as a fault in this context).
Programming techniques such as error handling serve the purpose of making the system react to
internal and external defects in a robust and safe way. To perform fault injection testing, the tester
can selectively insert defects into the system at the following points:

 Defects in external components: e.g., detecting implausible values from sensors

 Defects in interfaces: e.g., avoiding harm from short circuits or lost messages

 Defects in the application: detecting and handling internal defects

Faults may be injected in different ways, depending on the system and test environment:

 In the classic fault injection, the tester inserts a defect by manipulating the physical test
object.

 External defects or interface-related defects are typically simulated at run-time in a HiL test
environment using an FIU

 Software-based defects, such as interface or internal defects, are often simulated in a SiL
test environments or directly in the development environment, using tools like debuggers
or the Universal Measurement and Calibration Protocol (XCP).

4.2.4 Requirements-Based Testing

In requirements-based testing, the tester typically analyses textual requirements to derive test
conditions from individual atomic requirements, designs test cases that exercise the requirements
and executes them. This decomposition involves identifying distinct, testable aspects within a
requirement. Each atomic requirement should describe a single behavior or condition that can be
verified independently.

By breaking down a complex or high-level requirement into such granular elements, the tester
ensures comprehensive coverage and avoids missing hidden or implicit expectations.
Requirements coverage is measured as the ratio of atomic requirements covered by at least one
test case to the total number of atomic requirements.

Test cases for requirements-based testing are typically positive test cases, which confirm that the
stated requirements are met. Negative test cases are often derived using complementary test
techniques such as equivalence partitioning, error guessing, or exploratory testing, although
requirements may also explicitly define such negative conditions.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 47 of 69 2025/04/30
© International Software Testing Qualifications Board

4.2.5 Context-Dependent Selection

Several test techniques and test approaches are relevant in the context of automotive systems.
Some of these are introduced in the CTFL syllabus [ISTQB_FL_SYL], while others are discussed
in section (4.2). These include:

 Requirements-based testing

 Equivalence partitioning

 Boundary value analysis

 Statement testing

 Branch testing

 Modified condition/decision testing

 Error guessing

 Fault injection

 Back-to-back testing

The selection of suitable test techniques and test approaches depends on several factors:

State of the Art

Does the test technique or test approach represent the current state of the art for this purpose?
Here, standards such as ISO/IEC/IEEE 29119 and the ISO 26262 provide valuable guidance.
Particularly ISO/IEC/IEEE 29119-4 offers a structured overview of standardized test techniques,
including corresponding coverage measures, categorized into black-box test techniques, white-box
test techniques, and experience-based test techniques. The ISO 26262 standard further suggests
applicable test techniques and test approaches depending on the ASIL level, as discussed in
section 2.2. Deviations from the recommendations must be carefully considered and justified.

Test basis

Does the test basis provide suitable test conditions for the test technique? For example, the tester
can only form equivalence partitions if the test basis includes parameters or variables. Values must
be able to be grouped into equivalence partitions. Similar conditions apply to boundary values.
They can only be tested if the value range is defined in a linear way.

Risk-based testing

Risk-based testing means the identification of product risks and the consideration of the risk level
for the selection of the test techniques and test approaches. For example, the test of a boundary
value only makes sense if there is a risk of boundary violations occurring and if the impact of such
violations constitutes a risk.

Test level

Can the test technique / test approach be used on the test level? White-box testing is particularly
suitable if the source code or the internal structure serves as the test basis. In the ideal case, the
structural degree of coverage is measurable. For black-box testing, the test object needs to be
available and observable. For example, testing of an equivalence partition of a sensor in system
testing may be more efficient than in component testing. If a test technique or test approach is not
usable on one test level, the tester should choose a different test level in accordance with the test
strategy.

Examples of the selection of test techniques and test approaches

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 48 of 69 2025/04/30
© International Software Testing Qualifications Board

The following table provides a list of test techniques and test approaches, supplemented by an
example of a user's assessment of several of the above factors and the choice of test technique /
test approach on that basis.

 Test technique /
Test approach

Recommended
for use with
ASIL A?

Test
basis
suitable?

Risk, if
defect
not
detected?

Test level
system test
reasonable?

Selection

1 Requirements-based
testing

++ YES ++ YES X

2 Equivalence partitioning + YES ++ YES X

3 Boundary value analysis + NO - YES

4 Statement testing ++ YES ++ NO

5 Decision testing + YES ++ NO

6 MC/DC + YES + NO

7 Error guessing + NO ++ YES

8 Fault injection testing + YES + NO

9 Back-to-back testing + NO ++ YES

Table 6: Example of choice of test technique / test approach

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 49 of 69 2025/04/30
© International Software Testing Qualifications Board

5 List of Abbreviations

Abbreviation Definition / Meaning

ACQ Acquisition (ASPICE)

ASIL Automotive safety integrity level

ASAM Association for Standardization of Automation and Measuring Systems

ASPICE Automotive SPICE

AUTOSAR Automotive Open System Architecture

AUTOSIG Automotive Specific Interest Group

BP Base Practice (ASPICE)

BSW Basic Software (AUTOSAR)

CTFL Certified Tester Foundation Level

E/E Electric / Electronic

ECU Electronic Control Unit

E/E Electric/Electronic

EES Electrical Error Simulation

EOP End of Production

FIU Fault Insertion Unit

GP Generic Practice (ASPICE)

HiL Hardware-in-the-loop

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MAN Management (ASPICE)

MC/DC Modified Condition/Decision Coverage

MiL Model-in-the-loop

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 50 of 69 2025/04/30
© International Software Testing Qualifications Board

MISRA Motor Industry Software Reliability Association

OEM Original Equipment Manufacturer

PA Process Attribute (ASPICE)

PIM Process Improvement (ASPICE)

QM Quality Management

REU Reuse (ASPICE)

RTE Run Time Environment (AUTOSAR)

SiL Software-in-the-loop

SOP Start of Production

SPICE Software Process Improvement and Capability Determination

SPL Supply (ASPICE)

SUP Support (ASPICE)

SW-C Software Component (AUTOSAR)

SWE Software Engineering (ASPICE)

SYS Systems Engineering (ASPICE)

VAL Validation (ASPICE)

VDA German Association of the Automotive Industry

XCP Universal Measurement and Calibration Protocol

XiL X-in-the-loop: A general term for all in-the-loop test environments like
MiL, SiL, and HiL

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 51 of 69 2025/04/30
© International Software Testing Qualifications Board

6 Domain Specific Terms

Term Definition

Automotive Open System
Architecture

A development partnership establishing an open industry
standard for software architecture in the automotive industry.
Note: The term is also used for the standardized software
architecture and the associated system/software development
approach.

automotive safety integrity
level

A safety integrity level for automotive functional safety, defined in
ISO 26262.

Automotive SPICE A process reference model and an associated process
assessment model in the automotive industry.

basic software (AUTOSAR) In AUTOSAR, a software layer consisting of standardized,
hardware-oriented components.

breakout box A measuring unit to analyze, interrupt or manipulate physical
signals in wires.

bus system A network of electronic control units that exchange information
via the same connection.

capability dimension A dimension of a process assessment model defining the process
attributes to be assessed.

capability indicator An indicator for process capability used in process capability
assessment.

capability level A level assigned to a process based on the assessment of
corresponding process attributes in a process capability
assessment.

closed-loop system A system in which a controlling action or an input is dependent on
the output or on changes in the output.

directive (MISRA-C) A programming guideline in MISRA-C that cannot be fully verified
by static analysis.

ECU configuration
description

The data required to integrate software components with an
electronic control unit.

ECU extract System configuration data for an electronic control unit.

electronic control unit In automotive, an embedded system that controls electrical
(sub)systems in a vehicle.

MISRA-C A coding guideline for the use of the C programming language for
critical systems provided by MISRA.

open-loop system A system in which a controlling action or an input is independent
of the output or of changes in the output.

original equipment
manufacturer

In the automotive industry, a car manufacturer.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 52 of 69 2025/04/30
© International Software Testing Qualifications Board

process attribute A set of measurable characteristics of a process for a process
capability assessment.

process dimension A dimension of a process assessment model defining the
processes to be assessed.

product development
process

A process that includes all activities from first product idea until
production.

real time The processing of data so that results are available within a
predetermined time period.

real time capable computer A computer that is capable of processing signals in real time.

release Documentation of releasing a release item.

release item An identifiable element having implemented functions,
properties and intended use.

release process A process that leads to a release.

release recommendation A recommendation whether to release a release item based on
the test results.

rule (MISRA-C) A programming guideline in MISRA-C that is fully verifiable by
static analysis.

runtime environment
(AUTOSAR)

In AUTOSAR, the abstraction layer which controls and
implements the data exchange between AUTOSAR software
components as well as between application software and basic
software, both within an electronic control unit and between
electronic control units.

safety lifecycle The lifecycle of a safety relevant system from inception to
disposal.

simulation time The time frame of a computer simulation.

software component
(AUTOSAR)

In AUTOSAR, a component in the hardware-independent
application software layer.

software component
verification and integration
verification (ASPICE)

In Automotive SPICE, a verification of the integrated software
based on the software architectural design.

software unit verification
(ASPICE)

In Automotive SPICE, a verification of the software units for
consistency with their detailed design

software verification
(ASPICE)

In Automotive SPICE, a verification of the integrated software for
consistency with the software requirements

system configuration
description

The data used in the integration of all electronic control units in a
vehicle.

system integration and
integration verification
(ASPICE)

In Automotive SPICE, a verification of the integrated system
elements for consistency with the system architecture.

system lifecycle The phases of development of a system up to its retirement.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 53 of 69 2025/04/30
© International Software Testing Qualifications Board

system verification
(ASPICE)

In Automotive SPICE, a verification of the system for consistency
with the system requirements

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 54 of 69 2025/04/30
© International Software Testing Qualifications Board

7 References

7.1 Standards

Automotive SPICE 4.0 (2023), Automotive SPICE Process Assessment / Reference
Model

ISO 14229 (2020), Road vehicles – Unified diagnostic services (UDS)

ISO 26262 (2018), Road vehicles – Functional safety

ISO 26262-1 (2018), Road vehicles – Functional safety
Part 1: Vocabulary

ISO 26262-2 (2018), Road vehicles – Functional safety
Part 2: Management of functional safety

ISO 26262-3 (2018), Road vehicles – Functional safety
Part 3: Concept phase

ISO 26263-4 (2018), Road vehicles – Functional safety
Part 4: Product development at the system level

ISO 26263-5 (2018), Road vehicles – Functional safety
Part 5: Product development at the hardware level

ISO 26263-6 (2018), Road vehicles – Functional safety
Part 6: Product development at the software level

ISO 26263-7 (2018), Road vehicles – Functional safety
Part 7: Production, operation, service and decommissioning

ISO 26263-8 (2018), Road vehicles – Functional safety
Part 8: Supporting processes

ISO 26263-9 (2018), Road vehicles – Functional safety
Part 9: Automotive safety integrity level (ASIL)-oriented and
safety-oriented analyses

ISO 26263-10 (2018), Road vehicles – Functional safety
Part 10: Guidelines on ISO 26262

ISO/IEC 25010 (2023), Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE)
Product quality model

ISO/IEC 33020 (2019), Information technology – Process assessment
Process measurement framework for assessment of process
capability

ISO/IEC/IEEE 12207 (2017), Systems and software engineering – Software life cycle
processes

ISO/IEC/IEEE 15288 (2023), Systems and software engineering – System life cycle
processes

ISO/IEC/IEEE 24748-1 (2018), Systems and software engineering – Life cycle
management
Part 1: Guide for life cycle management

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 55 of 69 2025/04/30
© International Software Testing Qualifications Board

ISO/IEC/IEEE 29119-1 (2022), Software and systems engineering – Software testing
Part 1: General concepts

ISO/IEC/IEEE 29119-2 (2021), Software and systems engineering – Software testing
Part 2: Test processes

ISO/IEC/IEEE 29119-3 (2021), Software and systems engineering – Software testing
Part 3: Test documentation

ISO/IEC/IEEE 29119-4 (2021), Software and systems engineering – Software testing
Part 4: Test techniques

ISO/IEC/IEEE 29148 (2018), Systems and software engineering – Life cycle processes
– Requirements engineering

MISRA C (2025), Guidelines for the use of the C language in critical systems

7.2 ISTQB® Documents

[ISTQB_ALTTA_SYL] ISTQB® Advanced Level Technical Test Analyst Syllabus, Version
2012

[ISTQB_FL_SYL] ISTQB® Foundation Level Syllabus v4.0, 2023

7.3 Glossary References

References for terminology used in this Syllabus:

IREB® Glossary https://cpre.ireb.org/en/downloads-and-resources/glossary

ISTQB® Glossary https://glossary.istqb.org/

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 56 of 69 2025/04/30
© International Software Testing Qualifications Board

8 Trademarks
CTFL® is a registered trademark of the German Testing Board (GTB) e. V. in the EU only

GTB® is a registered trademark of the German Testing Board (GTB) e. V. in the EU only

ISTQB® is a registered trademark of the International Software Testing Qualifications Board

Automotive SPICE® is a registered trademark of the German Association of the Automotive
Industry (VDA)

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 57 of 69 2025/04/30
© International Software Testing Qualifications Board

9 Appendix A – Learning Objectives/Cognitive Level of
Knowledge

The specific learning objectives applying to this syllabus are shown at the beginning of each
chapter. Each topic in the syllabus will be examined according to the learning objective for it.

The learning objectives begin with an action verb corresponding to its cognitive level of knowledge
as listed below.

Level 1: Remember (K1)
The candidate will remember, recognize and recall a term or concept.

Action verbs: Recall, recognize.

Examples

Recall the concepts of the test pyramid.

Recognize the typical objectives of testing.

Level 2: Understand (K2)
The candidate can select the reasons or explanations for statements related to the topic, and can
summarize, compare, classify and give examples for the testing concept.

Action verbs: Classify, compare, differentiate, distinguish, explain, give examples, interpret,
summarize

Examples Notes

Classify test tools according to their purpose and
the test activities they support.

Compare the different test levels.

Can be used to look for similarities,
differences or both.

Differentiate testing from debugging. Looks for differences between concepts.

Distinguish between project and product risks. Allows two (or more) concepts to be
separately classified.

Explain the impact of context on the test
process.

Give examples of why testing is necessary.

Infer the root cause of defects from a given
profile of failures.

Summarize the activities of the work product
review process.

Certified Tester

Automotive Software Tester Syllabus

v2.1 Page 58 of 69 2025/04/30
© International Software Testing Qualifications Board

Level 3: Apply (K3)
The candidate can carry out a procedure when confronted with a familiar task or select the correct
procedure and apply it to a given context.

Action verbs: Apply, implement, prepare, use

Examples Notes

Apply boundary value analysis to derive test
cases from given requirements.

Should refer to a procedure / technique /
process etc.

Implement metric collection methods to support
technical and management requirements.

Prepare installability tests for mobile apps.

Use traceability to monitor test progress for
completeness and consistency with the test
objectives, test strategy, and test plan.

Could be used in a LO that wants the
candidate to be able to use a technique or
procedure. Like 'apply'.

Reference
(For the cognitive levels of learning objectives)

Anderson, L. W. and Krathwohl, D. R. (eds) (2001) A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 59 of 69 2025/04/30
© International Software Testing Qualifications Board

10 Appendix B – Business Outcomes Traceability Matrix with Learning Objectives 1

This chapter lists the traceability between the Business Outcomes and the Learning Objectives of Certified Tester Automotive Software Tester. 2
 3

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

AuT-BO1 Collaborate effectively in a test team. (“collaborate”) 37

AuT-BO2
Adapt the test techniques known from the ISTQB®
Certified Tester Foundation level (CTFL®) to the
specific project requirements. (“adapt”)

 7

AuT-BO3
Consider the basic requirements of the relevant
standards (i.e., Automotive SPICE® and ISO 26262)
for the selection of suitable test techniques. (“select”)

 27

AuT-BO4
Support the test team in the risk-based planning of the
test activities and apply known elements of structuring
and prioritization. (“support & apply”)

 9

AuT-BO5
Apply the virtual test environments (i.e., HiL, SiL, and
MiL) in test environments. (“apply”)

 13

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 60 of 69 2025/04/30
© International Software Testing Qualifications Board

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

Unique LO Learning Objective K-Level

1 Introduction

1.1
Requirements from divergent project objectives and
increasing product complexity

AuT-1.1

Explain and give examples of the challenges of
automotive product development that arise from
divergent project objectives and increasing product
complexity

K2 X

1.2 Project Aspects Influenced by Standards

AuT-1.2
Recall project aspects that are influenced by standards
(e.g., time, cost, quality and project risks and product
risks)

K1 X

1.3 The Six Generic Stages in the System Lifecycle

AuT-1.3
Recall the six generic stages in the system lifecycle
per ISO/IEC/IEEE 24748-1

K1 X

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 61 of 69 2025/04/30
© International Software Testing Qualifications Board

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

1.4
The Contribution and Participation of the Tester in the
Release Process

AuT-1.4
Recall the role (i.e., contribution and collaboration) of
the tester in the release process

K1 X

2
Standards for the Testing of Electric/Electronic (E/E)
Systems

2.1 Automotive SPICE (ASPICE)

AuT-2.1.1.1
Recall the two dimensions of Automotive SPICE
(ASPICE)

K1 X

AuT-2.1.1.2
Recall the process categories and process groups of
ASPICE [informative]

K1 X

AuT-2.1.1.3 Explain the Capability levels 0 to 3 of ASPICE K2 X

AuT-2.1.2.1
Recall the purpose of the test-specific relevant
processes of ASPICE

K1 X X

AuT-2.1.2.2
Explain the meaning of the four rating levels and the
capability indicators of ASPICE from the testing
perspective

K2 X

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 62 of 69 2025/04/30
© International Software Testing Qualifications Board

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

AuT-2.1.2.3
Explain the requirements of ASPICE for the test strategy
including the criteria for regression verification

K2 X X X

AuT-2.1.2.4 Recall the requirements of ASPICE for the testware K1 X X X

AuT-2.1.2.5 Use verification measures for software unit verification K3 X X X

AuT-2.1.2.6
Explain the different traceability requirements of
ASPICE from the testing perspective

K2 X X

2.2 ISO 26262

AuT-2.2.1.1
Explain the objective of functional safety for E/E
systems

K2 X

AuT-2.2.1.2 Recall the testers’ contribution for the safety culture K1 X X

AuT-2.2.2
Discuss the role of the tester in the framework of the
safety lifecycle per ISO 26262

K2 X X

AuT-2.2.3.1
Recall the design and structure of ISO 26262
[informative]

K1 X

AuT-2.2.3.2
Recall the parts of ISO 26262 that are relevant to the
tester

K1 X X

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 63 of 69 2025/04/30
© International Software Testing Qualifications Board

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

AuT-2.2.4.1 Recall the criticality levels of ASIL K1 X X

AuT-2.2.4.2
Explain the influence of ASIL on applicable test
techniques and test types for static testing and dynamic
tests and the resulting test scope

K2 X X X X

AuT-2.2.5 Use the method tables of ISO 26262 K3 X X X X

2.3 AUTOSAR

AuT-2.3.1 Recall the project objectives of AUTOSAR K1 X

AuT-2.3.2 Recall the general design of AUTOSAR [informative] K1 X

AuT-2.3.3
Recall the influence of AUTOSAR on the work of the
tester

K1
X X X

2.4 Comparison of ASPICE, ISO 26262, and CTFL®

AuT-2.4.1
Recall the different objectives of ASPICE and ISO
26262

K1 X

AuT-2.4.2
Explain the differences between ASPICE and ISO
26262 and CTFL® regarding test levels

K2 X X X

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 64 of 69 2025/04/30
© International Software Testing Qualifications Board

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

3 Testing in a Virtual Environment

3.1 Test Environment in General

AuT-3.1.1
Recall the motivation behind a test environment in
automotive development

K1
X X

AuT-3.1.2
Recall the general parts of an automotive specific test
environment

K1
X X

AuT-3.1.3
Recall the differences between closed-loop systems
and open-loop systems

K2
X X

AuT-3.1.4
Recall the essential functions, databases and
Protocols of an automotive control unit

K1
X X

3.2 Testing in XiL Test Environments

AuT-3.2.1.1 Recall the structure of a MiL test environment K1 X X

AuT-3.2.1.2
Explain the application area and the boundary
conditions of a MiL test environment

K2
X X

AuT-3.2.2.1 Recall the structure of a SiL test environment K1 X X

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 65 of 69 2025/04/30
© International Software Testing Qualifications Board

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

AuT-3.2.2.2
Recall the application areas and the boundary
conditions of a SiL test environment

K1
X X

AuT-3.2.3.1 Recall the structure of a HiL test environment K1 X X

AuT-3.2.3.2
Explain the application areas and the boundary
conditions of a HiL test environment

K2
X X

AuT-3.2.4.1
Summarize the advantages and disadvantages of
testing using criteria for the XiL test environments

K2
X X X

AuT-3.2.4.2
Apply criteria for the assignment of a given extent of
the test to one or more test environments

K3
X X X

AuT-3.2.4.3 Outline the XiL test environments in the V-model K1 X X X

4 Static Testing and Dynamic Testing

4.1 Static Testing

AuT-4.1.1
Explain the purpose and requirements of the MISRA-C
guideline with the help of examples

K2 X X

AuT-4.1.2
Apply requirements review using the quality
characteristics of the ISO 29148:2018 standard that
are relevant to testers

K3 X X

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 66 of 69 2025/04/30
© International Software Testing Qualifications Board

Business Outcomes: Automotive Software Tester BO1 BO2 BO3 BO4 BO5

4.2 Dynamic Testing

AuT-4.2.1
Design test cases to achieve modified
condition/decision testing coverage

K3 X X

AuT-4.2.2
Explain the use of back-to-back testing by giving
examples

K2 X X

AuT-4.2.3 Explain fault injection testing by giving examples K2 X X

AuT-4.2.4 Recall the principles of requirements-based testing K1 X X

AuT-4.2.5
Apply context dependent criteria for the choice of
suitable and necessary test techniques and test
approaches

K2 X X X X

 4

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 67 of 69 2025/04/30
© International Software Testing Qualifications Board

11 Appendix C – Release Notes
The ISTQB® Automotive Software Tester Syllabus v2.1 (2025) is a minor update of v2.0.1 (2017). The
learning objectives themselves are unchanged, but the content of some learning objectives was updated
to reflect updated standards referenced in the syllabus. Additionally, changes between the ISTQB CTFL
3.1 and CTFL 4.0 and updates in the ISTQB Glossary were considered. Also, consistency and
understandability were improved when necessary.

The following updated standards were taken into account:

 ISO 24748-1:2024

 ISO 26262:2018

 Automotive SPICE 4.0

 AUTOSAR Classic Release R23-11

 MISRA-C:2025

 ISO 29148:2018

The naming scheme of the learning objectives changed to “AuT” plus section number.

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 68 of 69 2025/04/30
© International Software Testing Qualifications Board

12 Appendix D – Automotive Databases and Communication
Protocols

Interfaces Database Communication protocols

Memory ASAM MCD-2 MC
(also ASAP2 or A2L)

ASAM MCD-1 XCP
(Universal Measurement and Calibration Protocol)

ASAM MCD-1 CCP
(CAN Calibration Protocol)

Bus ASAM MCD-2 NET standard
(also FIBEX - Field Bus Exchange
Format)

FlexRay
(ISO 17458)

CAN
(Controller Area Network per ISO 11898-2)

 DBC
(communication database for CAN)

CAN
(Controller Area Network per ISO 11898-2)

Diagnostics ASAM MCD-3 D
(Application Programming Interface
Specification)

ASAM SOVD
(Service-Oriented Vehicle
Diagnostics)

CDD
(CANdelaStudio diagnostic
description)

KWP2000 (ISO 14230)

ISO-OBD (ISO 15031)

UDS (ISO 14229)

SOME/IP (AUTOSAR Specification)

Table 6: Common databases and communication protocols from the automotive industry

AUTOSAR has a standardized XML format which integrates the databases of a complete vehicle. It is
called ARXML format (AUTOSAR Integrated Master Table of Application Interfaces, XML scheme R21-
11).

Certified Tester

Automotive Software Testing Syllabus

V2.1 Page 69 of 69 2025/04/30
© International Software Testing Qualifications Board

13 Index

acceptance test 31 1

Automotive SPICE 19 2

AUTOSAR 29 3

back-to-back testing 45 4

closed-loop system 34 5

coding guidelines 42 6

component test 31 7

condition coverage 44 8

criteria for regression verification 22 9

display of levels 20 10

environment model 33, 34, 35 11

fault injection 46 12

functional safety 24 13

hardware-in-the-loop 37 14

integration 29 15

integration test 31 16

MC/DC-Test 44 17

method tables 27, 31 18

model-in-the-loop 35 19

modified condition/decision testing 44 20

multiple condition test 44 21

multi-system test 31 22

open-loop system 34 23

process category 19 24

process group 19 25

process improvement 19, 20 26

process models 19 27

quality characteristics 43 28

safety lifecycle 24 29

software component integration and 30
integration verification 21 31

software unit verification 21 32

software verification 21 33

software-in-the-loop 36 34

system integration and integration verification 35
21 36

system integration test 30, 31 37

system lifecycle 15 38

system test 30, 31 39

system verification 21 40

test levels 26, 30 41

test strategy 22 42

traceability 23 43

verification 25, 26 44

XiL test environments 35 45

 46

