Boundary Value Analysis According to the
ISTQB® Foundation Level Syllabus

Matthias Hamburg, German Testing Board, matthias.hamburg@istgb.org

Adam Roman, Polish Testing Board, Jagiellonian University, adam.roman@uj.edu.pl

Boundary value analysis (BVA) is one of the basic and most widely used test techniques by testers.
The reason for the popularity of this technique is that it is relatively simple, and at the same time
very effective in finding a common type of defects. However, there are misunderstandings about its
application. The purpose of this article is to explain how exactly to apply this technique according to
ISTQB®.

1. The technique
The ISTQB® Foundation Syllabus (v4.0) describes the BVA as follows:

Boundary Value Analysis (BVA) is a technique based on exercising the boundaries of equivalence
partitions. Therefore, BVA can only be used for ordered partitions. The minimum and maximum
values of a partition are its boundary values. In the case of BVA, if two elements belong to the same
partition, all elements between them must also belong to that partition.

BVA focuses on the boundary values of the partitions because developers are more likely to make
errors with these boundary values. Typical defects found by BVA are located where implemented
boundaries are misplaced to positions above or below their intended positions or are omitted
altogether.

This syllabus covers two versions of the BVA: 2-value and 3-value BVA. They differ in terms of
coverage items per boundary that need to be exercised to achieve 100% coverage.

In 2-value BVA (Craig 2002, Myers 2011), for each boundary value there are two coverage items: this
boundary value and its closest neighbor belonging to the adjacent partition. To achieve 100%
coverage with 2-value BVA, test cases must exercise all coverage items, i.e., all identified boundary
values. Coverage is measured as the number of boundary values that were exercised, divided by the
total number of identified boundary values, and is expressed as a percentage.

In 3-value BVA (Koomen 2006, O’Regan 2019), for each boundary value there are three coverage
items: this boundary value and both its neighbors. Therefore, in 3-value BVA some of the coverage
items may not be boundary values. To achieve 100% coverage with 3-value BVA, test cases must
exercise all coverage items, i.e., identified boundary values and their neighbors. Coverage is measured
as the number of boundary values and their neighbors exercised, divided by the total number of
identified boundary values and their neighbors, and is expressed as a percentage.

3-value BVA is more rigorous than 2-value BVA as it may detect defects overlooked by 2-value BVA.
For example, if the decision “if (x < 10) ...” is incorrectly implemented as “if (x = 10) ...”, no test data
derived from the 2-value BVA (x = 10, x = 11) can detect the defect. However, x = 9, derived from the
3-value BVA, is likely to detect it.




2. Boundary values are not the same as borders

Boundary values are not the same as the border between two equivalence partitions. In common
understanding, a border lies between two areas separating them, just like a geographical border lies
between two geographical territories. In contrast, boundary values are elements of a specific
equivalence partition marking its limits. In mathematics, the notion of a boundary can be defined
precisely, but it needs a good understanding of the basic concepts of general topology. However, for
the purpose of software testing, ISTQB® Foundation Level uses the simpler case of ordered partitions
in which the minimum and maximum values constitute the boundaries.

N, _———— -

Figure 1: Border and boundaries for a simple example

Suppose, for example, that the test object has the six-element domain {1, 2, 3, 4, 5, 6} from the figure
above as input and that it shall behave differently on the two partitions marked with rounded
rectangles: {1, 2, 3,4} and {5, 6}. In software testing, there is no point in talking about the "border
between the two equivalence partitions." If we want to verify that the boundaries are implemented
correctly, it rather makes sense to test the behavior at (or around) the boundary values of each
equivalence partition: values 1 and 4 for the first one, and values 5 and 6 for the second one.

3. BVA step by step

The application of the BVA follows the procedure below.

Step 1. Identify the value domain

Step 2. Determine the equivalence partitions

Step 3. Identify the boundary values of the equivalence partitions

Step 4. For each boundary value, determine the coverage items according to the variants of the
BVA (2-value or 3-value coverage)

Step 5. Determine the union of all coverage item sets, taking into account that they may overlap

Step 6. Design test cases for the identified coverage items

Example. The registration form of a certain program contains a field "login". A valid login has at least
6 and at most 15 characters.

We want to apply BVA to verify whether this function is implemented correctly.

Step 1. The domain for which we want to verify the implementation is the length of the login. Thus, it
will be an ordered, infinite set of positive integers: D ={0, 1, 2, 3, 4, ...}

Step 2. Valid logins have lengths from 6 to 15, so we distinguish the equivalence partition "lengths of
correct login": P={6,7,8,9, 10, 11, 12, 13, 14, 15}. The remaining elements form two separate
partitions: Q ={0, 1, 2, 3, 4, 5} (login too short) and R = {16, 17, 18, ...} (login too long). In total, we
have three equivalence partitions.



Step 3. The boundary values of the equivalence partitions are as follows:
e The boundary values of Q are 0 and 5.
e The boundary values of P are 6 and 15.

o The boundary value of R is 16 (there is no maximum value in R, so R has only one boundary
value).

Step 4. In 2-value BVA, for each boundary value there are two coverage items: the boundary value
itself and its neighbor belonging to an adjacent partition (see the figure below, in which black points
represent the coverage items in 2-value BVA). Note that the set of all coverage items is the same as
the set of all boundary values.

Boundary value for P

its neighbour not belonging to P
Q P R
ST TTTTTTT T T T T TR T T SNeTT Y TTTTT T T T T T T T T E eI T T I I T N TTTTTETTEETET T \

1!
0 1 2 3 4 5 : 6 7 8 9 10 1 12 13 14 15 :: 16 17 138 .
R SR ‘/ N e e e e e L rs
Boundary value for Q

its neighbour not belonging to @

°
O
O
O
O
9
o
O
O
O
O
O
O
O
O
L
o
O
O

Figure 2: 2-value BVA coverage items for the login example

In 3-value BVA, for each boundary value there are three coverage items: this boundary value and
both its neighbors, regardless to which partition they belong (see the figure below, in which white
points represent the additional coverage items in 3-value BVA).

Boundary value for P

N
1
I
1
1

C0000000 0000

- ®
O

Boundary value for @

its neighbours

Figure 3: 3-value BVA coverage items for the login example

The table below summarizes the coverage items:

.\ 2-value BVA 3-value BVA
Partition Boundary value , .
coverage items coverage items
Q 0 0 0,1
5 5,6 4,5,6
) 6 6,5 56,7
15 15, 16 14, 15, 16
R 16 16, 15 15, 16, 17

Table 1: Coverage items for the login example

Note that there is no coverage item —1 for the boundary value 0, because this is an infeasible string

length.

Step 5. The union of the coverage items is:



e |n 2-value BVA: {0, 5, 6, 15, 16}

e In3-valueBVA: {0, 1,4,5,6,7, 14, 15, 16, 17}

These are the coverage items that need to be tested.

Step 6. For each coverage item we design a separate test case, shown in the tables below. Note that
the input is the string that represents a login. Each such string corresponds to an element of the

considered domain D, representing the length of this login.

TC Test input (login) Expected result Coverage item
TC-Q-min <empty string> Login rejected (too short) 0

TC-Q-max Abcde Login rejected (too short) 5

TC-P-min John99 Login accepted 6

TC-P-max 123456789012345 Login accepted 15

TC-R-min SixteenCharlLogin Login rejected (too long) 16

Table 2: Test cases for the login example in 2-value BVA

TC Test input (login) Expected result Coverage item
TC-Q-min+1 X Login rejected (too short) 1

TC-Q-max-1 pOqr Login rejected (too short) 4

TC-P-min+1 XsevenX Login accepted 7

TC-P-max-1 12345678901234 Login accepted 14
TC-R-min+1 VeryVerylLonglLogin Login rejected (too long) 17

Table 3: Additional test cases for the login example in 3-value BVA

4. The number of coverage items

It is a common misconception that 2-value BVA requires twice as many coverage items as borders,
and 3-value BVA requires three times as many. Both are wrong, as illustrated in the example above.

In 2-value BVA, the standard case is that there are two coverage items at a border separating two
adjacent partitions (one on each side). See for example the border between Q and P in the example
above. However, in special cases there are less coverage items:

e at an outer border, there is only one coverage item (e.g. 0 in the example above);
e if an equivalence partition contains only one value, the two adjacent borders will require in
total three coverage items rather than four because of the overlap.

In 3-value BVA, the standard case is that there are four coverage items at a border separating two
adjacent partitions. See, again, the border between Q and P in the example above. However, there
are again special cases like for 2-value BVA with less than four coverage items for a border. This is the
case at outer borders and for borders at both sides of a partition with less than four elements.

5. Defect types addressed by the BVA

BVA is a technique that focuses on defects in domain implementation. To illustrate its effectiveness
in domain defect detection, let us consider the login example above.

A developer is tasked with implementing the login validation. To verify if the login is long enough, the
developer might design the following code snippet:



IF length < 5 THEN

Login is too short
ELSE

Login is not too short
END IF

Alternatively, the developer might also write:

IF length < 6 THEN

Login is too short
ELSE

Login is not too short
END IF

Both implement the specification correctly. However, the developer could also pick a wrong operator
from the set {<, <, =, #, 2, >} of possible operators. This would result in a common type of defect in
the implementation of domains. Let us see which BVA coverage items would detect which of these
defects.

In 2-value BVA the coverage items are 5 and 6 as indicated above. 3-value BVA adds the coverage
items 4 and 7. So we can list the actual results of the two IF predicates for each operator mentioned
above and compare them with the correct result:

IF predicate Actual results for the coverage items:
5 6 4 7

Length < 5 (correct) True False True False
Length < 5 (incorrect) False False True False
Length = 5 (incorrect) True False False False
Length # 5 (incorrect) False True True True
Length 2 5 (incorrect) True True False True
Length > 5 (incorrect) False True False True
Length < 6 (correct) True False True False
Length < 6 (incorrect) True True True False
Length = 6 (incorrect) False True False False
Length # 6 (incorrect) True False True True
Length 2 6 (incorrect) False True False True
Length > 6 (incorrect) False False False True

Table 4: Actual results for the login minimal length in case of correct and incorrect predicate implementations (green = as
expected, red = not as expected)

As we can see, the inputs 5 and 6 for 2-value BVA detect 8 of the 10 incorrect predicates. However,
they fail to detect two cases of defective predicates: Length = 5 and Length # 6. These defects would
pass the 2-value BVA tests. Depending on the risk level, the effort for the two additional coverage
items for the 3-value BVA (4 and 7) might pay off. This example also shows that 3-value BVA is
stronger than 2-value BVA but requires more coverage items.

6. Dealing with seamless transitions

BVA is a black-box technique. During test execution, the tester must be able to recognize from the
actual results whether the test object behaves according to the correct or incorrect equivalence



partition. This may not be the case with seamless transitions of the functionality. In such cases, it is a
good idea to define an additional equivalence partition in which the expected behaviors are
indistinguishable. This allows for the verification of the implementation of the boundary values with
black-box testing. The following example illustrates this situation.

A banking application should charge a fee for trades depending on the trade amount in Euros. The fee
is 1% of the trade amount, but no less than 1€. The fee is rounded to the nearest Euro cent.

In this example, the input value domain consists of non-negative numbers with the precision of two
decimal places. The specification indicates two equivalence partitions:

e EP1 for amounts between 0.00€ and 100.00€ for which the fee is 1€;
e EP2 for amounts greater than 100.00€ for which the fee is 1% of the amount.

However, neither a 2-value BVA black-box test with the inputs 100.00€ and 100.01€, nor a 3-value
one with the additional inputs 99.99€ and 100.02€ will indicate if the partitions have been correctly
implemented. For all these inputs, the fee will be 1.00€ both for the 1% rate and for the constant.
Hence, we adjust the two original partitions and introduce an additional equivalence partition for the
transition area:

e EP1’ adjusted to amounts between 0.00€ and 99.49€ for which the fee is 1€ and not 1% of
the amount;

e EP2’' for amounts greater than or equal 100.50€ for which the fee is 1% of the amount and
not 1€;

e EP3’ for amounts from 99.50€ to 100.49€ for which the fee is 1€.

For the new EP1’, the boundary value of 99.49€ is the maximum for which the 1% rate would yield an
incorrect fee of 0.99€. Similarly, for the new EP2’, the amount of 100.50 € is the minimum value for
which the 1€ fee would be incorrect. These boundary values will have the greatest chance to detect
implementation defects. For example, these tests will detect the faulty implementation “IF amount <
101 THEN fee = 1€ ELSE fee = 1% * amount”, which is undetected with the boundary values for the
old partitions EP1, EP2.

7. Further practical considerations
We conclude this paper with some further practical considerations.

Clear value domains. It is not without reason that we mention the identification of the value domain
as the first step of the BVA. Each type of variable has its own value domain. For example, if the input
is the length of a string, it will be a non-negative integer. It will usually be beyond the scope of testing
to check if the test object handles negative length in a specific way. In general, the tester should
differentiate between possible inputs (within the value domain) and impossible ones (for which the
behavior of the test object does not need to be specified). Within the domain of all possible inputs,
the tester may differentiate between valid inputs (for which the test object delivers a business value)
and invalid inputs (which should be rejected by the test object in a specified manner).

Precise constraints. When analyzing a specification for boundary values, the tester should pay great
attention to the way domain constraints are specified. This is because constraints can be formulated
in natural language, using phrases such as: "at least", "at most", "less than", "more than", "from x to
y", "between x and y", etc., which might be misinterpreted. A review of the test basis using an

appropriate checklist for boundary value analysis is recommended.



Continuous domains. In the real world, we can deal with continuous value domains (for example, the
speed of a rocket is a real number in a continuous interval). In practice, the representation of
numbers in a computer is finite, so it is necessary to choose an appropriate level of precision and
perform analysis taking into account this specified level of precision.

ON, OFF, IN and OUT values. Rather than considering boundary values and their neighbors on both
sides, some authors consider values ON the boundary (the boundary value itself), OFF the boundary
(the closest neighbor belonging to the adjacent partition), IN values (inside the equivalence partition
but not being the ON point), and OUT values (outside the equivalence partition but not being the OFF
point). The only difference between BVA and this technique is that IN and OUT values are not
necessarily neighboring the boundary values. For one-dimensional value domains, using ON and OFF
values is equivalent to 2-value BVA.

Multiple dimensions. In practice, the input domain of the test object is often multidimensional,
determined by more than one variable, and its behavior depends on a combination of multiple
inputs. For equivalence partitions of multidimensional domains, the boundary value analysis from the
ISTQB® Foundation Level Syllabus is not readily applicable. Such situations require an extension of
the technique based on ON, OFF, IN and OUT values, which is called domain analysis. Domain
analysis goes beyond the scope of this paper.



	1. The technique
	2. Boundary values are not the same as borders
	3. BVA step by step
	4. The number of coverage items
	5. Defect types addressed by the BVA
	6. Dealing with seamless transitions
	7. Further practical considerations

