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0. Introduction 

0.1. Purpose of this Syllabus 
This syllabus forms the basis for the International Software Testing Qualification at the Foundation Level. 
The ISTQB® provides this syllabus as follows:  

1. To member boards, to translate into their local language and to accredit training providers. 
Member boards may adapt the syllabus to their particular language needs and modify the 
references to adapt to their local publications.  

2. To certification bodies, to derive examination questions in their local language adapted to the 
learning objectives for this syllabus.  

3. To training providers, to produce courseware and determine appropriate teaching methods.  

4. To certification candidates, to prepare for the certification exam (either as part of a training course 
or independently).  

To the international software and systems engineering community, to advance the profession of software 
and systems testing, and as a basis for books and articles. 

0.2. The Certified Tester Foundation Level in Software Testing 
The Foundation Level qualification is aimed at anyone involved in software testing. This includes people 
in roles such as testers, test analysts, test engineers, test consultants, test managers, software 
developers and development team members. This Foundation Level qualification is also appropriate for 
anyone who wants a basic understanding of software testing, such as project managers, quality 
managers, product owners, software development managers, business analysts, IT directors and 
management consultants. Holders of the Foundation Certificate will be able to go on to higher-level 
software testing qualifications. 

0.3. Career Path for Testers 
The ISTQB® scheme provides support for testing professionals at all stages of their careers offering both 
breadth and depth of knowledge. Individuals who achieved the ISTQB® Foundation certification may also 
be interested in the Core Advanced Levels (Test Analyst, Technical Test Analyst, and Test Manager) and 
thereafter Expert Level (Test Management or Improving the Test Process). Anyone seeking to develop 
skills in testing practices in an Agile software development could consider the Agile Technical Tester or 
Agile Test Leadership at Scale certifications. The Specialist stream offers a deep dive into areas that 
have specific test approaches and test activities (e.g., in test automation, AI testing, model-based testing, 
mobile app testing), that are related to specific test areas (e.g., performance testing, usability testing, 
acceptance testing, security testing), or which cluster testing know-how for certain industry domains (e.g., 
automotive or gaming). Please visit www.istqb.org for the latest information on ISTQB´s Certified Tester 
Scheme. 

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.istqb.org%2F&data=05%7C01%7Cfilipe.carlos%40innowave.tech%7Cb1ee83ff6521424c792908da440ce915%7C726174dc30ab40e185fc60cda0e0bd81%7C0%7C0%7C637897119663377885%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Sgv6mR7KzlIIQ6MFZ0cBRVv6yEoTekNJEqwFQ7M%2Bx7M%3D&reserved=0
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0.4. Business Outcomes 
This section lists the 14 Business Outcomes expected of a person who has achieved the Foundation 
Level certification. 

A Foundation Level Certified Tester can… 

FL-BO1  Understand what testing is and why it is beneficial 

FL-BO2   Understand fundamental concepts of software testing 

FL-BO3   Identify the test approach and activities to be implemented depending on the context of 
testing 

FL-BO4   Assess and improve the quality of documentation 

FL-BO5   Increase the effectiveness and efficiency of testing 

FL-BO6   Align the test process with the software development lifecycle 

FL-BO7   Understand test management principles 

FL-BO8   Write and communicate clear and understandable defect reports 

FL-BO9   Understand the factors that influence the priorities and efforts related to testing 

FL-BO10   Work as part of a cross-functional team 

FL-BO11   Know risks and benefits related to test automation 

FL-BO12   Identify essential skills required for testing 

FL-BO13   Understand the impact of risk on testing 

FL-BO14   Effectively report on test progress and quality 

0.5. Examinable Learning Objectives and Cognitive Level of Knowledge 
Learning objectives support business outcomes and are used to create the Certified Tester Foundation 
Level exams. In general, all contents of chapters 1-6 of this syllabus are examinable at a K1 level. That is, 
the candidate may be asked to recognize, remember, or recall a keyword or concept mentioned in any of 
the six chapters. The specific learning objectives levels are shown at the beginning of each chapter, and 
classified as follows:  

• K1: Remember 

• K2: Understand 

• K3: Apply 

Further details and examples of learning objectives are given in Appendix A. All terms listed as keywords 
just below chapter headings shall be remembered (K1), even if not explicitly mentioned in the learning 
objectives. 
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0.6. The Foundation Level Certificate Exam 
The Foundation Level Certificate exam is based on this syllabus. Answers to exam questions may require the 
use of material based on more than one section of this syllabus. All sections of the syllabus are examinable, 
except for the Introduction and Appendices. Standards and books are included as references (Chapter 7), but 
their content is not examinable, beyond what is summarized in the syllabus itself from such standards and 
books. Refer to the documents “Exam Structures and Rules” and “Exam Structure Tables”. 

0.7. Accreditation 
An ISTQB® Member Board may accredit training providers whose course material follows this syllabus. 
Training providers should obtain accreditation guidelines from the Member Board or body that performs 
the accreditation. An accredited course is recognized as conforming to this syllabus and is allowed to 
have an ISTQB® exam as part of the course. The accreditation guidelines for this syllabus follow the 
general Accreditation Guidelines published by the Processes Management and Compliance Working 
Group. 

0.8. Handling of Standards 
There are standards referenced in the Foundation Syllabus (e.g., IEEE or ISO standards). These references 
provide a framework (as in the references to ISO 25010 regarding quality characteristics) or to provide a source 
of additional information if desired by the reader. The standards documents are not intended for examination. 
Refer to chapter 7 for more information on standards. 

0.9. Staying Current 
The software industry changes rapidly. To deal with these changes and to provide the stakeholders with access 
to relevant and current information, the ISTQB working groups have created links on the www.istqb.org 
website, which refer to supporting documentation and changes to standards. This information is not examinable 
under the Foundation syllabus. 

0.10. Level of Detail 
The level of detail in this syllabus allows for internationally consistent courses and exams. To achieve this 
goal, the syllabus consists of: 

• General instructional objectives describing the intention of the Foundation Level 

• A list of terms (keywords) that students must be able to recall 

• Learning objectives for each knowledge area, describing the cognitive learning outcomes to be 
achieved 

• A description of the key concepts, including references to recognized sources 

The syllabus content is not a description of the entire knowledge area of software testing; it reflects the 
level of detail to be covered in Foundation Level training courses. It focuses on test concepts and 
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techniques that can be applied to all software projects independent of the software development lifecycle 
(SDLC) employed. 

0.11. How this Syllabus is Organized 

There are six chapters with examinable content. The top-level heading for each chapter specifies the 
training time for the chapter. Timing is not provided below the chapter level. For accredited training 
courses, the syllabus requires a minimum of 1135 minutes (18 hours and 55 minutes) of instruction, 
distributed across the six chapters as follows: 

• Chapter 1: Fundamentals of Testing (180 minutes) 

o The student learns the basic principles related to testing, the reasons why testing is 
required, and what the test objectives are. 

o The student understands the test process, the major test activities, and testware. 

o The student understands the essential skills for testing. 

• Chapter 2: Testing Throughout the Software Development Lifecycle (130 minutes) 

o The student learns how testing is incorporated into different development approaches. 

o The student learns the concepts of test-first approaches, as well as DevOps. 

o The student learns about the different test levels, test types, and maintenance testing. 

• Chapter 3: Static Testing (80 minutes) 

o The student learns about the static testing basics, the feedback and review process. 

• Chapter 4: Test Analysis and Design (390 minutes) 

o The student learns how to apply black-box, white-box, and experience-based test 
techniques to derive test cases from various software work products. 

o The student learns about the collaboration-based test approach. 

• Chapter 5: Managing the Test Activities (335 minutes) 

o The student learns how to plan tests in general, and how to estimate test effort. 

o The student learns how risks can influence the test scope. 

o The student learns how to monitor and control test activities. 

o The student learns how configuration management supports testing. 

o The student learns how to report defects in a clear and understandable way. 

• Chapter 6: Test Tools (20 minutes) 

o The student learns to classify tools and to understand the risks and benefits of test 
automation. 
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1. Fundamentals of Testing – 180 minutes 

Keywords 

coverage, debugging, defect, error, failure, quality, quality assurance, root cause, test analysis, test basis, 
test case, test completion, test condition, test control, test data, test design, test execution, test 
implementation, test monitoring, test object, test objective, test planning, test procedure, test process, test 
result, testing, testware, traceability, validation, verification 

 

Learning Objectives for Chapter 1: 
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1.1. What is Testing? 
Software systems are an integral part of our daily life. Most people have had experience with software 
that did not work as expected. Software that does not work correctly can lead to many problems, 
including loss of money, time or business reputation, and, in extreme cases, even injury or death. 
Software testing assesses software quality and helps reducing the risk of software failure in operation. 

Software testing is a set of activities to discover defects and evaluate the quality of software work 
products. These work products, when being tested, are known as test objects. A common misconception 
about testing is that it only consists of executing tests (i.e., running the software and checking the test 
results). However, software testing also includes other activities and must be aligned with the software 
development lifecycle (see chapter 2). 

Another common misconception about testing is that testing focuses entirely on verifying the test object. 
While testing involves verification, i.e., checking whether the system meets specified requirements, it also 
involves validation, which means checking whether the system meets users’ and other stakeholders’ 
needs in its operational environment. 

Testing may be dynamic or static. Dynamic testing involves the execution of software, while static testing 
does not. Static testing includes reviews (see chapter 3) and static analysis. Dynamic testing uses 
different types of test techniques and test approaches to derive test cases (see chapter 4). 

Testing is not only a technical activity. It also needs to be properly planned, managed, estimated, 
monitored and controlled (see chapter 5). 

Testers use tools (see chapter 6), but it is important to remember that testing is largely an intellectual 
activity, requiring the testers to have specialized knowledge, use analytical skills and apply critical 
thinking and systems thinking (Myers 2011, Roman 2018). 

The ISO/IEC/IEEE 29119-1 standard provides further information about software testing concepts. 

1.1.1. Test Objectives 

The typical test objectives are: 

• Evaluating work products such as requirements, user stories, designs, and code  

• Causing failures and finding defects 

• Ensuring required coverage of a test object 

• Reducing the risk level of inadequate software quality 

• Verifying whether specified requirements have been fulfilled 

• Verifying that a test object complies with contractual, legal, and regulatory requirements 

• Providing information to stakeholders to allow them to make informed decisions 

• Building confidence in the quality of the test object 

• Validating whether the test object is complete and works as expected by the stakeholders 



 
Certified Tester 

Foundation Level 

 

  

 

v4.0.1 Page 16 of 78  2024-09-15 

© International Software Testing Qualifications Board 

Test objectives can vary, depending upon the context, which includes the work product being tested, the 
test level, risks, the software development lifecycle (SDLC) being followed, and factors related to the 
business context, e.g., corporate structure, competitive considerations, or time to market. 

1.1.2. Testing and Debugging 

Testing and debugging are separate activities. Testing can trigger failures that are caused by defects in 
the software (dynamic testing) or can directly find defects in the test object (static testing).  

When dynamic testing (see chapter 4) triggers a failure, debugging is concerned with finding causes of 
this failure (defects), analyzing these causes, and eliminating them. The typical debugging process in this 
case involves:  

• Reproduction of a failure 

• Diagnosis (finding the defect) 

• Fixing the defect 

Subsequent confirmation testing checks whether the fixes resolved the problem. Preferably, confirmation 
testing is done by the same person who performed the initial test. Subsequent regression testing can also 
be performed, to check whether the fixes are causing failures in other parts of the test object (see section 
2.2.3 for more information on confirmation testing and regression testing).  

When static testing identifies a defect, debugging is concerned with removing it. There is no need for 
reproduction or diagnosis, since static testing directly finds defects, and cannot cause failures (see 
chapter 3). 

1.2. Why is Testing Necessary? 
Testing, as a form of quality control, helps in achieving the agreed upon test objectives within the set 
scope, time, quality, and budget constraints. Testing’s contribution to success should not be restricted to 
the test team activities. Any stakeholder can use their testing skills to bring the project closer to success. 
Testing components, systems, and associated work products (e.g., documentation) helps to identify 
defects in software.  

1.2.1. Testing’s Contributions to Success 

Testing provides a cost-effective means of detecting defects. These defects can then be removed (by 
debugging – a non-testing activity), so testing indirectly contributes to higher quality test objects. 

Testing provides a means of directly evaluating the quality of a test object at various phases in the SDLC. 
These measures are used as part of a larger project management activity, contributing to decisions to 
move to the next phase of the SDLC, such as the release decision. 

Testing provides users with indirect representation on the development project. Testers ensure that their 
understanding of users’ needs are considered throughout the development lifecycle. The alternative is to 
involve a representative set of users as part of the development project, which is not usually possible due 
to the high costs and lack of availability of suitable users. 
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Testing may also be required to meet contractual or legal requirements, or to comply with regulatory 
standards. 

1.2.2. Testing and Quality Assurance (QA) 

While people often use the terms “testing” and “quality assurance” (QA) interchangeably, testing and QA 
are not the same.   

Testing is a product-oriented, corrective approach that focuses on those activities supporting the 
achievement of appropriate levels of quality. Testing is a major form of quality control, while others 
include formal methods (model checking and proof of correctness), simulation and prototyping. 

QA is a process-oriented, preventive approach that focuses on the implementation and improvement of 
processes. It works on the basis that if a good process is followed correctly, then it will generate a good 
product. QA applies to both the development and testing processes, and is the responsibility of everyone 
on a project. 

Test results are used by QA and testing. In testing they are used to fix defects, while in QA they provide 
feedback on how well the development and test processes are performing. 

1.2.3. Errors, Defects, Failures, and Root Causes 

Human beings make errors (mistakes), which produce defects (faults, bugs), which in turn may result in 
failures. Humans make errors for various reasons, such as time pressure, complexity of work products, 
processes, infrastructure or interactions, or simply because they are tired or lack adequate training.  

Defects can be found in documentation, such as a requirements specification or a test script, in source 
code, or in a supporting work product such as a build file. Defects in work products produced earlier in the 
SDLC, if undetected, often lead to defective work products later in the lifecycle. If a defect in code is 
executed, the system may fail to do what it should do, or do something it shouldn’t, causing a failure. 
Some defects will always result in a failure if executed, while others will only result in a failure in specific 
circumstances, and some may never result in a failure. 

Errors and defects are not the only cause of failures. Failures can also be caused by environmental 
conditions, such as when radiation or electromagnetic fields cause defects in firmware. 

A root cause is a fundamental reason for the occurrence of a problem (e.g., a situation that leads to an 
error). Root causes are identified through root cause analysis, which is typically performed when a failure 
occurs or a defect is identified. It is believed that further similar failures or defects can be prevented or 
their frequency reduced by addressing the root cause, such as by removing it. 

1.3. Testing Principles 
A number of testing principles offering general guidelines applicable to all testing have been suggested 
over the years. This syllabus describes seven such principles.  

1. Testing shows the presence, not the absence of defects. Testing can show that defects are present 
in the test object, but cannot prove that there are no defects (Buxton 1970). Testing reduces the 
probability of defects remaining undiscovered in the test object, but even if no defects are found, testing 
cannot prove test object correctness. 
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2. Exhaustive testing is impossible. Testing everything is not feasible except in trivial cases (Manna 
1978). Rather than attempting to test exhaustively, test techniques (see chapter 4), test case prioritization 
(see section 5.1.5), and risk-based testing (see section 5.2), should be used to focus test efforts. 

3. Early testing saves time and money. Defects that are removed early in the process will not cause 
subsequent defects in derived work products. The cost of quality will be reduced since fewer failures will 
occur later in the SDLC (Boehm 1981). To find defects early, both static testing (see chapter 3) and 
dynamic testing (see chapter 4) should be started as early as possible. 

4. Defects cluster together. A small number of system components usually contain most of the defects 
discovered or are responsible for most of the operational failures (Enders 1975). This phenomenon is an 
illustration of the Pareto principle. Predicted defect clusters, and actual defect clusters observed during 
testing or in operation, are an important input for risk-based testing (see section 5.2). 

5. Tests wear out. If the same tests are repeated many times, they become increasingly ineffective in 
detecting new defects (Beizer 1990). To overcome this effect, existing tests and test data may need to be 
modified, and new tests may need to be written. However, in some cases, repeating the same tests can 
have a beneficial outcome, e.g., in automated regression testing (see section 2.2.3). 

6. Testing is context dependent. There is no single universally applicable approach to testing. Testing is 
done differently in different contexts (Kaner 2011). 

7. Absence-of-defects fallacy. It is a fallacy (i.e., a misconception) to expect that software verification 
will ensure the success of a system. Thoroughly testing all the specified requirements and fixing all the 
defects found could still produce a system that does not fulfill the users’ needs and expectations, that 
does not help in achieving the customer’s business goals, and that is inferior compared to other 
competing systems. In addition to verification, validation should also be carried out (Boehm 1981). 

1.4. Test Activities, Testware and Test Roles 
Testing is context dependent, but, at a high level, there are common sets of test activities without which 
testing is less likely to achieve test objectives. These sets of test activities form a test process. The test 
process can be tailored to a given situation based on various factors. Which test activities are included in 
this test process, how they are implemented, and when they occur is normally decided as part of the test 
planning for the specific situation (see section 5.1). 

The following sections describe the general aspects of this test process in terms of test activities and 
tasks, the impact of context, testware, traceability between the test basis and testware, and testing roles. 

The ISO/IEC/IEEE 29119-2 standard provides further information about test processes. 

1.4.1. Test Activities and Tasks  

A test process usually consists of the main groups of activities described below. Although many of these 
activities may appear to follow a logical sequence, they are often implemented iteratively or in parallel. 
These testing activities usually need to be tailored to the system and the project. 

Test planning consists of defining the test objectives and then selecting an approach that best achieves 
the objectives within the constraints imposed by the overall context. Test planning is further explained in 
section 5.1. 
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Test monitoring and test control. Test monitoring involves the ongoing checking of all test activities and 
the comparison of actual progress against the plan. Test control involves taking the actions necessary to 
meet the test objectives. Test monitoring and test control are further explained in section 5.3. 

Test analysis includes analyzing the test basis to identify testable features. Associated test conditions 
are defined and prioritized, taking the related risks and risk levels into account (see section 5.2). The test 
basis and the test object are also evaluated to identify defects they may contain and to assess their 
testability. Test analysis is often supported by the use of test techniques (see chapter 4). Test analysis 
answers the question “what to test?” in terms of measurable coverage criteria.  

Test design includes elaborating the test conditions into test cases and other testware (e.g., test 
charters). This activity often involves the identification of coverage items, which serve as a guide to 
specify test case inputs. Test techniques (see chapter 4) can be used to support this activity. Test design 
also includes defining the test data requirements, designing the test environment and identifying the 
necessary infrastructure and tools. Test design answers the question “how to test?”. 

Test implementation includes creating or acquiring the testware necessary for test execution (e.g., test 
data). Test cases can be organized into test procedures, which are often assembled into test suites. 
Manual and automated test scripts are created. Test procedures are prioritized and arranged within a test 
execution schedule for efficient test execution (see section 5.1.5). The test environment is built and 
verified to be set up correctly. 

Test execution includes running the tests in accordance with the test execution schedule (test runs). 
Test execution may be manual or automated. Test execution can take many forms, including continuous 
testing or pair testing sessions. Actual test results are compared with the expected results. The test 
results are logged. Anomalies are analyzed to identify their likely causes. This analysis allows us to report 
the anomalies based on the failures observed (see section 5.5). 

Test completion usually occurs at project milestones (e.g., release, end of iteration, test level 
completion). For any unresolved defects, change requests or product backlog items are created. Any 
testware that may be useful in the future is identified and archived or handed over to the appropriate 
teams. The test environment is shut down to an agreed state. The test activities are analyzed to identify 
lessons learned and improvements for future iterations, releases, or projects (see section 2.1.6). A test 
completion report is created and communicated to the stakeholders. 

1.4.2. Test Process in Context 

Testing is not performed in isolation. Test activities are an integral part of the development processes 
carried out within an organization. Testing is also funded by stakeholders and its final goal is to help fulfill 
the stakeholders’ business needs. Therefore, the way the testing is carried out will depend on a number 
of contextual factors including: 

• Stakeholders (needs, expectations, requirements, willingness to cooperate, etc.) 

• Team members (skills, knowledge, level of experience, availability, training needs, etc.) 

• Business domain (criticality of the test object, identified risks, market needs, specific legal 
regulations, etc.) 

• Technical factors (type of software, product architecture, technology used, etc.) 

• Project constraints (scope, time, budget, resources, etc.) 
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• Organizational factors (organizational structure, existing policies, practices used, etc.) 

• Software development lifecycle (engineering practices, development methods, etc.) 

• Tools (availability, usability, compliance, etc.) 

These factors will have an impact on many test-related issues, including: test strategy, test techniques 
used, degree of test automation, required level of coverage, level of detail of testware, test reporting, etc. 

1.4.3. Testware  

Testware is created as output work products from the test activities described in section 1.4.1. There is a 
significant variation in how different organizations produce, shape, name, organize and manage their 
work products. Proper configuration management (see section 5.4) ensures consistency and integrity of 
work products. The following list of work products is not exhaustive: 

• Test planning work products include: test plan, test schedule, risk register, entry criteria and 
exit criteria (see section 5.1). Risk register is a list of risks together with risk likelihood, risk impact 
and information about risk mitigation (see section 5.2). Test schedule, risk register, entry criteria 
and exit criteria are often a part of the test plan. 

• Test monitoring and test control work products include: test progress reports (see section 
5.3.2), documentation of control directives (see section 5.3) and information about risks (see 
section 5.2).  

• Test analysis work products include: (prioritized) test conditions (e.g., acceptance criteria, see 
section 4.5.2), and defect reports regarding defects in the test basis (if not fixed directly). 

• Test design work products include: (prioritized) test cases, test charters, coverage items, test 
data requirements and test environment requirements. 

• Test implementation work products include: test procedures, manual and automated test 
scripts, test suites, test data, test execution schedule, and test environment items. Examples of 
test environment items include: stubs, drivers, simulators, and service virtualizations. 

• Test execution work products include: test logs, and defect reports (see section 5.5). 

• Test completion work products include: test completion report (see section 5.3.2), action items 
for improvement of subsequent projects or iterations, documented lessons learned, and change 
requests (e.g., as product backlog items). 

1.4.4. Traceability between the Test Basis and Testware 

To implement effective test monitoring and test control, it is important to establish and maintain 
traceability throughout the test process between the test basis elements, testware associated with these 
elements (e.g., test conditions, risks, test cases), test results, and defects. 

Accurate traceability supports coverage evaluation, so it is very useful if measurable coverage criteria are 
defined in the test basis. The coverage criteria can function as key performance indicators to drive the 
activities that show to what extent the test objectives have been achieved (see section 1.1.1). For 
example: 
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• Traceability of test cases to requirements can verify that the requirements are covered by test 
cases. 

• Traceability of test results to risks can be used to evaluate the level of residual risk in a test 
object.  

In addition to evaluating coverage, good traceability makes it possible to determine the impact of 
changes, facilitates audits, and helps meet IT governance criteria. Good traceability also makes test 
progress reports and test completion reports more easily understandable by including the status of test 
basis elements. This can also assist in communicating the technical aspects of testing to stakeholders in 
an understandable manner. Traceability provides information to assess product quality, process 
capability, and project progress against business goals.  

1.4.5. Roles in Testing 

In this syllabus, two principal roles in testing are covered: a test management role and a testing role. The 
activities and tasks assigned to these two roles depend on factors such as the project and product 
context, the skills of the people in the roles, and the organization. 

The test management role takes overall responsibility for the test process, test team and leadership of the 
test activities. The test management role is mainly focused on the activities of test planning, test 
monitoring, test control and test completion. The way in which the test management role is carried out 
varies depending on the context. For example, in Agile software development, some of the test 
management tasks may be handled by the Agile team. Tasks that span multiple teams or the entire 
organization may be performed by test managers outside of the development team. 

The testing role takes overall responsibility for the engineering (technical) aspect of testing. The testing 
role is mainly focused on the activities of test analysis, test design, test implementation and test 
execution. 

Different people may take on these roles at different times. For example, the test management role can 
be performed by a team leader, by a test manager, by a development manager, etc. It is also possible for 
one person to take on the roles of testing and test management at the same time. 

1.5. Essential Skills and Good Practices in Testing 
Skill is the ability to do something well that comes from one’s knowledge, practice and aptitude. Good 
testers should possess some essential skills to do their job well. Good testers should be effective team 
players and should be able to perform testing on different levels of test independence. 

1.5.1. Generic Skills Required for Testing 

While being generic, the following skills are particularly relevant for testers: 

• Testing knowledge (to increase effectiveness of testing, e.g., by using test techniques) 

• Thoroughness, carefulness, curiosity, attention to details, being methodical (to identify defects, 
especially the ones that are difficult to find) 
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• Good communication skills, active listening, being a team player (to interact effectively with all 
stakeholders, to convey information to others, to be understood, and to report and discuss 
defects) 

• Analytical thinking, critical thinking, creativity (to increase effectiveness of testing) 

• Technical knowledge (to increase efficiency of testing, e.g., by using appropriate test tools) 

• Domain knowledge (to be able to understand and to communicate with end users/business 
representatives) 

Testers are often the bearers of bad news. It is a common human trait to blame the bearer of bad news. 
This makes communication skills crucial for testers. Communicating test results may be perceived as 
criticism of the product and of its author. Confirmation bias can make it difficult to accept information that 
disagrees with currently held beliefs. Some people may perceive testing as a destructive activity, even 
though it contributes greatly to project success and product quality. To try to improve this view, information 
about defects and failures should be communicated in a constructive way. 

1.5.2. Whole Team Approach 

One of the important skills for a tester is the ability to work effectively in a team context and to contribute 
positively to the team goals. The whole team approach – a practice coming from Extreme Programming 
(see section 2.1) – builds upon this skill.  

In the whole team approach any team member with the necessary knowledge and skills can perform any 
task, and everyone is responsible for quality. The team members share the same workspace (physical or 
virtual), as co-location facilitates communication and interaction. The whole team approach improves 
team dynamics, enhances communication and collaboration within the team, and creates synergy by 
allowing the various skill sets within the team to be leveraged for the benefit of the project. 

Testers work closely with other team members to ensure that the desired quality levels are achieved. This 
includes collaborating with business representatives to help them create suitable acceptance tests and 
working with developers to agree on the test strategy and decide on test automation approaches. Testers 
can thus transfer testing knowledge to other team members and influence the development of the 
product. 

Depending on the context, the whole team approach may not always be appropriate. For instance, in 
some situations, such as safety-critical, a high level of test independence may be needed. 

1.5.3. Independence of Testing 

A certain degree of independence makes the tester more effective at finding defects due to differences 
between the author’s and the tester’s cognitive biases (cf. Salman 1995). Independence is not, however, 
a replacement for familiarity, e.g., developers can efficiently find many defects in their own code. 

Work products can be tested by their author (no independence), by the author's peers from the same 
team (some independence), by testers from outside the author's team but within the organization (high 
independence), or by testers from outside the organization (very high independence). For most projects, it 
is usually best to carry out testing with multiple levels of independence (e.g., developers performing 
component testing and component integration testing, test team performing system and system 
integration testing, and business representatives performing acceptance testing). 
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The main benefit of independence of testing is that independent testers are likely to recognize different 
kinds of failures and defects compared to developers because of their different backgrounds, technical 
perspectives, and biases. Moreover, an independent tester can verify, challenge, or disprove 
assumptions made by stakeholders during specification and implementation of the system.  

However, there are also some drawbacks. Independent testers may be isolated from the development 
team, which may lead to a lack of collaboration, communication problems, or an adversarial relationship 
with the development team. Developers may lose a sense of responsibility for quality. Independent 
testers may be seen as a bottleneck or be blamed for delays in release. 
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2. Testing Throughout the Software Development Lifecycle 
– 130 minutes 
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testing 

 

Learning Objectives for Chapter 2: 

2.1  Testing in the Context of a Software Development Lifecycle 

FL-2.1.1 (K2) Explain the impact of the chosen software development lifecycle on testing 

FL-2.1.2 (K1) Recall good testing practices that apply to all software development lifecycles 

FL-2.1.3 (K1) Recall the examples of test-first approaches to development 

FL-2.1.4 (K2) Summarize how DevOps might have an impact on testing  

FL-2.1.5 (K2) Explain shift left  

FL-2.1.6 (K2) Explain how retrospectives can be used as a mechanism for process improvement 

2.2 Test Levels and Test Types 

FL-2.2.1 (K2) Distinguish the different test levels 

FL-2.2.2 (K2) Distinguish the different test types 

FL-2.2.3 (K2) Distinguish confirmation testing from regression testing 

2.3 Maintenance Testing 

FL-2.3.1 (K2) Summarize maintenance testing and its triggers  
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2.1. Testing in the Context of a Software Development Lifecycle (SDLC) 
An SDLC model is an abstract, high-level representation of the software development process. An SDLC 
model defines how different development phases and types of activities performed within this process 
relate to each other, both logically and chronologically. Examples of SDLC models include: sequential 
development models (e.g., waterfall model, V-model), iterative development models (e.g., spiral model, 
prototyping), and incremental development models (e.g., Unified Process). 

Some activities within software development processes can also be described by more detailed software 
development methods and Agile practices. Examples include: acceptance test-driven development 
(ATDD), behavior-driven development (BDD), domain-driven design (DDD), extreme programming (XP), 
feature-driven development (FDD), Kanban, Lean IT, Scrum, and test-driven development (TDD). 

2.1.1. Impact of the Software Development Lifecycle on Testing 

Testing must be adapted to the SDLC to succeed. The choice of the SDLC impacts on the: 

• Scope and timing of test activities (e.g., test levels and test types) 

• Level of detail of test documentation 

• Choice of test techniques and test approach 

• Extent of test automation 

• Role and responsibilities of a tester 

In sequential development models, in the initial phases testers typically participate in requirement 
reviews, test analysis, and test design. The executable code is usually created in the later phases, so 
typically dynamic testing cannot be performed early in the SDLC. 

In some iterative development models and incremental development models, it is assumed that each 
iteration delivers a working prototype or product increment. This implies that in each iteration both static 
testing and dynamic testing may be performed at all test levels. Frequent delivery of increments requires 
fast feedback and extensive regression testing. 

Agile software development assumes that change may occur throughout the project. Therefore, 
lightweight work product documentation and extensive test automation to make regression testing easier 
are favored in agile projects. Also, most of the manual testing tends to be done using experience-based 
test techniques (see Section 4.4) that do not require extensive prior test analysis and design. 

2.1.2. Software Development Lifecycle and Good Testing Practices 

Good testing practices, independent of the chosen SDLC model, include the following: 

• For every software development activity, there is a corresponding test activity, so that all 
development activities are subject to quality control 

• Different test levels (see chapter 2.2.1) have specific and different test objectives, which allows 
for testing to be appropriately comprehensive while avoiding redundancy 
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• Test analysis and design for a given test level begins during the corresponding development 
phase of the SDLC, so that testing can adhere to the principle of early testing (see section 1.3) 

• Testers are involved in reviewing work products as soon as drafts of these work products are 
available, so that this earlier testing and defect detection can support shift left (see section 2.1.5).  

2.1.3. Testing as a Driver for Software Development 

TDD, ATDD and BDD are similar development approaches, where tests are defined as a means of 
directing development. Each of these approaches implements the principle of early testing (see section 
1.3) and follows shift left (see section 2.1.5), since the tests are defined before the code is written. They 
support an iterative development model. These approaches are characterized as follows: 

Test-Driven Development (TDD): 

• Directs the coding through test cases (instead of extensive software design) (Beck 2003) 

• Tests are written first, then the code is written to satisfy the tests, and then the tests and code are 
refactored 

Acceptance Test-Driven Development (ATDD) (see section 4.5.3): 

• Derives tests from acceptance criteria as part of the system design process (Gärtner 2011) 

• Tests are written before the part of the application is developed to satisfy the tests  

Behavior-Driven Development (BDD): 

• Expresses the desired behavior of an application with test cases written in a simple form of 
natural language, which is easy to understand by stakeholders – usually using the 
Given/When/Then format (Chelimsky 2010) 

• Test cases should then automatically be translated into executable tests 

For all the above approaches, tests may persist as automated tests to ensure the code quality in future 
adaptions / refactoring. 

2.1.4. DevOps and Testing 

DevOps is an organizational approach aiming to create synergy by getting development (including 
testing) and operations to work together to achieve a set of common goals. DevOps requires a cultural 
shift within an organization to bridge the gaps between development (including testing) and operations 
while treating their functions with equal value. DevOps promotes team autonomy, fast feedback, 
integrated toolchains, and technical practices like continuous integration (CI) and continuous delivery 
(CD). This enables the teams to build, test and release high-quality code faster through a DevOps 
delivery pipeline (Kim 2016). 

From the testing perspective, some of the benefits of DevOps are as follows: 

• Fast feedback on the code quality, and whether changes adversely affect existing code 

• CI promotes shift left in testing (see section 2.1.5) by encouraging developers to submit high 
quality code accompanied by component tests and static analysis 
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• Automated processes are promoted like CI/CD that facilitates establishing stable test 
environments 

• The visibility on non-functional quality characteristics increases (e.g., performance efficiency, 
reliability) 

• Automation through a delivery pipeline reduces the need for repetitive manual testing 

• The risk of regression is minimized due to the scale and range of automated regression tests 

DevOps is not without its risks and challenges, which include: 

• The DevOps delivery pipeline must be defined and established  

• CI / CD tools must be introduced and maintained 

• Test automation requires additional resources and may be difficult to establish and maintain 

Although DevOps comes with a high level of automated testing, manual testing – especially from the 
user's perspective – will still be needed. 

2.1.5. Shift Left  

The principle of early testing (see section 1.3) is sometimes referred to as shift left because it is an 
approach where testing is performed earlier in the SDLC. Shift left basically suggests that testing should 
be done earlier (e.g., not waiting for code to be implemented or for components to be integrated), but it 
does not mean that testing later in the SDLC should be neglected. 

There are some good practices that illustrate how to achieve a “shift left” in testing, which include: 

• Reviewing the specification from the perspective of testers. These review activities on 
specifications often find potential defects, such as ambiguities, incompleteness, and 
inconsistencies  

• Writing test cases before the code is written and have the code run in a test harness during code 
implementation 

• Using CI and even better CD as it comes with fast feedback and automated component tests to 
accompany source code when it is submitted to the code repository 

• Completing static analysis of source code prior to dynamic testing, or as part of an automated 
process 

• Performing non-functional testing starting at the component test level, where possible. This is a 
form of shift left as these non-functional test types tend to be performed later in the SDLC when a 
complete system and a representative test environment are available 

Shift left might result in extra training, effort and/or costs earlier in the process but is expected to save 
efforts and/or costs later in the process. 

For shift left it is important that stakeholders are convinced and bought into this concept. 
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2.1.6. Retrospectives and Process Improvement 

Retrospectives are often held at the end of a project or an iteration, at a release milestone, or can be held 
when needed. The timing and organization of the retrospectives depend on the particular SDLC model 
being followed. In these meetings the participants (not only testers, but also e.g., developers, architects, 
product owner, business analysts) discuss: 

• What was successful, and should be retained? 

• What was not successful and could be improved? 

• How to incorporate the improvements and retain the successes in the future? 

The results should be recorded and are normally part of the test completion report (see section 5.3.2). 
Retrospectives are critical for the successful implementation of continuous improvement, and it is 
important that any recommended improvements are followed up. 

Typical benefits for testing include: 

• Increased test effectiveness / efficiency (e.g., by implementing suggestions for process 
improvement) 

• Increased quality of testware (e.g., by jointly reviewing the test processes) 

• Team bonding and learning (e.g., as a result of the opportunity to raise issues and propose 
improvement points) 

• Improved quality of the test basis (e.g., as deficiencies in the extent and quality of the 
requirements could be addressed and solved) 

• Better cooperation between development and testing (e.g., as collaboration is reviewed and 
optimized regularly) 

2.2. Test Levels and Test Types 
Test levels are groups of test activities that are organized and managed together. Each test level is an 
instance of the test process, performed in relation to software at a given phase of development, from 
individual components to complete systems or, where applicable, systems of systems.  

Test levels are related to other activities within the SDLC. In sequential SDLC models, the test levels are 
often defined such that the exit criteria of one level are part of the entry criteria for the next level. In some 
iterative models, this may not apply. Development activities may span through multiple test levels. Test 
levels may overlap in time. 

Test types are groups of test activities related to specific quality characteristics and most of those test 
activities can be performed at every test level. 

2.2.1. Test Levels 

In this syllabus, the following five test levels are described: 
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• Component testing (also known as unit testing) focuses on testing components in isolation. It 
often requires specific support, such as test harnesses or unit test frameworks. Component 
testing is normally performed by developers in their development environments. 

• Component integration testing (also known as unit integration testing) focuses on testing the 
interfaces and interactions between components. Component integration testing is heavily 
dependent on the integration strategy like bottom-up, top-down or big-bang. 

• System testing focuses on the overall behavior and capabilities of an entire system or product, 
often including functional testing of end-to-end tasks and the non-functional testing of quality 
characteristics. For some non-functional quality characteristics, it is preferable to test them on a 
complete system in a representative test environment (e.g., usability). Using simulations of sub-
systems is also possible. System testing may be performed by an independent test team, and is 
related to specifications for the system. 

• System integration testing focuses on testing the interfaces of the system under test and other 
systems and external services. System integration testing requires suitable test environments 
preferably similar to the operational environment. 

• Acceptance testing focuses on validation and on demonstrating readiness for deployment, 
which means that the system fulfills the user’s business needs. Ideally, acceptance testing should 
be performed by the intended users. The main forms of acceptance testing are: user acceptance 
testing (UAT), operational acceptance testing, contractual acceptance testing and regulatory 
acceptance testing, alpha testing and beta testing. 

Test levels are distinguished by the following non-exhaustive list of attributes, to avoid overlapping of test 
activities: 

• Test object  

• Test objectives 

• Test basis 

• Defects and failures 

• Approach and responsibilities 

2.2.2. Test Types 

A lot of test types exist and can be applied in projects. In this syllabus, the following four test types are 
addressed: 

Functional testing evaluates the functions that a component or system should perform. The functions 
are “what” the test object should do. The main objective of functional testing is checking the functional 
completeness, functional correctness and functional appropriateness. 

Non-functional testing evaluates attributes other than functional characteristics of a component or 
system. Non-functional testing is the testing of “how well the system behaves”. The main objective of non-
functional testing is checking the non-functional quality characteristics. The ISO/IEC 25010 standard 
provides the following classification of the non-functional quality characteristics: 
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• Performance efficiency 

• Compatibility 

• Usability (also known as interaction capability) 

• Reliability 

• Security 

• Maintainability 

• Portability (also known as flexibility)  

• Safety 

It is sometimes appropriate for non-functional testing to start early in the SDLC (e.g., as part of reviews or 
component testing). Many non-functional tests are derived from functional tests as they use the same 
functional tests, but check that while performing the function, a non-functional constraint is satisfied (e.g., 
checking that a function performs within a specified time, or a function can be ported to a new platform). 
The late discovery of non-functional defects can pose a serious threat to the success of a project. Non-
functional testing sometimes needs a very specific test environment, such as a usability lab for usability 
testing. 

Black-box testing (see section 4.2) is specification-based and derives tests from documentation not 
related to the internal structure of the test object. The main objective of black-box testing is checking the 
system's behavior against its specifications. 

White-box testing (see section 4.3) is structure-based and derives tests from the system's 
implementation or internal structure (e.g., code, architecture, work flows, and data flows). The main 
objective of white-box testing is to cover the underlying structure by the tests to an acceptable level. 

All the four above mentioned test types can be applied to all test levels, although the focus will be 
different at each level. Different test techniques can be used to derive test conditions and test cases for 
all the mentioned test types.  

2.2.3. Confirmation Testing and Regression Testing 

Changes are typically made to a component or system to either enhance it by adding a new feature or to 
fix it by removing a defect. Testing should then also include confirmation testing and regression testing. 

Confirmation testing confirms that an original defect has been successfully fixed. Depending on the risk, 
one can test the fixed version of the software in several ways, including: 

• executing all tests that previously have failed due to the defect, or, also by 

• adding new tests to cover any changes that were needed to fix the defect 

However, when time or money is short when fixing defects, confirmation testing might be restricted to 
simply exercising the test steps that should reproduce the failure caused by the defect and checking that 
the failure does not occur. 

Regression testing confirms that no adverse consequences have been caused by a change, including a 
fix that has already been confirmation tested. These adverse consequences could affect the same 
component where the change was made, other components in the same system, or even other 
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connected systems. Regression testing may not be restricted to the test object itself but can also be 
related to the environment. It is advisable first to perform an impact analysis to recognize the extent of the 
regression testing. Impact analysis shows which parts of the software could be affected. 

Regression test suites are run many times and generally the number of regression test cases will 
increase with each iteration or release, so regression testing is a strong candidate for automation. Test 
automation should start early in the project. Where CI is used, such as in DevOps (see section 2.1.4), it is 
good practice to also include automated regression tests. Depending on the situation, this may include 
regression tests on different test levels. 

Confirmation testing and/or regression testing for the test object are needed on all test levels if defects 
are fixed and/or changes are made on these test levels. 

2.3. Maintenance Testing 
There are different categories of maintenance, it can be corrective, adaptive to changes in the 
environment or improve performance or maintainability (see ISO/IEC 14764 for details), so maintenance 
can involve planned releases/deployments and unplanned releases/deployments (hot fixes). Impact 
analysis may be done before a change is made, to help decide if the change should be made, based on 
the potential consequences in other areas of the system. Testing the changes to an operational system 
includes both evaluating the success of the implementation of the change and the checking for possible 
regressions in parts of the system that remain unchanged (which is usually most of the system).  

The scope of maintenance testing typically depends on: 

• The degree of risk of the change 

• The size of the existing system 

• The size of the change 

The triggers for maintenance and maintenance testing can be classified as follows: 

• Modifications, such as planned enhancements (i.e., release-based), corrective changes or hot 
fixes. 

• Upgrades or migrations of the operational environment, such as from one platform to another, 
which can require tests associated with the new environment as well as of the changed software, 
or tests of data conversion when data from another application is migrated into the system being 
maintained. 

• Retirement, such as when an application reaches the end of its life. When a system is retired, this 
can require testing of data archiving if long data retention periods are required. Testing of restore 
and retrieval procedures after archiving may also be needed in the event that certain data is 
required during the archiving period. 
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3. Static Testing – 80 minutes 

Keywords 

anomaly, dynamic testing, formal review, informal review, inspection, review, static analysis, static testing, 
technical review, walkthrough 

 

Learning Objectives for Chapter 3: 

3.1  Static Testing Basics 

FL-3.1.1 (K1) Recognize types of work products that can be examined by static testing 

FL-3.1.2 (K2) Explain the value of static testing  

FL-3.1.3 (K2) Compare and contrast static testing and dynamic testing 

3.2  Feedback and Review Process  

FL-3.2.1 (K1) Identify the benefits of early and frequent stakeholder feedback 

FL-3.2.2 (K2) Summarize the activities of the review process  

FL-3.2.3 (K1) Recall which responsibilities are assigned to the principal roles when performing reviews 

FL-3.2.4 (K2) Compare and contrast the different review types 

FL-3.2.5 (K1) Recall the factors that contribute to a successful review  
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3.1. Static Testing Basics 
In contrast to dynamic testing, in static testing the software under test does not need to be executed. 
Code, process specification, system architecture specification or other work products are evaluated 
through manual examination (e.g., reviews) or with the help of a tool (e.g., static analysis). Test objectives 
include improving quality, detecting defects and assessing characteristics like readability, completeness, 
correctness, testability and consistency. Static testing can be applied for both verification and validation. 

Testers, business representatives (Product Owner, business analyst etc.) and developers work together 
during example mappings, collaborative user story writing and backlog refinement sessions to ensure that 
user stories and related work products meet defined criteria, e.g., the Definition of Ready (see section 
5.1.3). Review techniques can be applied to ensure user stories are complete and understandable and 
include testable acceptance criteria. By asking the right questions, testers explore, challenge and help 
improve the proposed user stories. 

Static analysis can identify problems prior to dynamic testing while often requiring less effort, since no test 
cases are required, and tools (see chapter 6) are typically used. Static analysis is often incorporated into 
CI frameworks (see section 2.1.4). While largely used to detect specific code defects, static analysis is 
also used to evaluate maintainability and security. Spelling checkers and readability tools are other 
examples of static analysis tools. 

3.1.1. Work Products Examinable by Static Testing 

Almost any work product can be examined using static testing. Examples include requirement 
specification documents, source code, test plans, test cases, product backlog items, test charters, project 
documentation, contracts and models. 

Any work product that can be read and understood can be the subject of a review. However, for static 
analysis, work products need a structure against which they can be checked (e.g., models, code or text 
with a formal syntax).  

Work products that are not appropriate for static testing include those that are difficult to interpret by 
human beings and that should not be analyzed by tools (e.g., 3rd party executable code due to legal 
reasons). 

3.1.2. Value of Static Testing 

Static testing can detect defects in the earliest phases of the SDLC, fulfilling the principle of early testing 
(see section 1.3). It can also identify defects which cannot be detected by dynamic testing (e.g., 
unreachable code, design patterns not implemented as desired, defects in non-executable work 
products).  

Static testing provides the ability to evaluate the quality of, and to build confidence in work products. By 
verifying the documented requirements, the stakeholders can also make sure that these requirements 
describe their actual needs. Since static testing can be performed early in the SDLC, a shared 
understanding can be created among the involved stakeholders. Communication will also be improved 
between the involved stakeholders. For this reason, it is recommended to involve a wide variety of 
stakeholders in static testing.  
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Even though reviews can be costly to implement, the overall project costs are usually much lower than 
when no reviews are performed because less time and effort needs to be spent on fixing defects later in 
the project.  

Certain code defects can be detected using static analysis more efficiently than in dynamic testing, 
usually resulting in both fewer code defects and a lower overall development effort. 

3.1.3. Differences between Static Testing and Dynamic Testing 

Static testing and dynamic testing practices complement each other. They have similar objectives, such 
as supporting the detection of defects in work products (see section 1.1.1), but there are also some 
differences, such as: 

• Static testing and dynamic testing (with analysis of failures) can both lead to the detection of 
defects, however there are some defect types that can only be found by either static or dynamic 
testing.  

• Static testing finds defects directly, while dynamic testing causes failures from which the 
associated defects are determined through subsequent analysis 

• Static testing may more easily detect defects that lay on paths through the code that are rarely 
executed or hard to reach using dynamic testing 

• Static testing can be applied to non-executable work products, while dynamic testing can only be 
applied to executable work products 

• Static testing can be used to measure quality characteristics that are not dependent on executing 
code (e.g., maintainability), while dynamic testing can be used to measure quality characteristics 
that are dependent on executing code (e.g., performance efficiency) 

Typical defects that are easier and/or cheaper to find through static testing include: 

• Defects in requirements (e.g., inconsistencies, ambiguities, contradictions, omissions, 
inaccuracies, duplications) 

• Design defects (e.g., inefficient database structures, poor modularization) 

• Certain types of coding defects (e.g., variables with undefined values, undeclared variables, 
unreachable or duplicated code, excessive code complexity) 

• Deviations from standards (e.g., lack of adherence to naming conventions in coding standards) 

• Incorrect interface specifications (e.g., mismatched number, type or order of parameters) 

• Specific types of security vulnerabilities (e.g., buffer overflows) 

• Gaps or inaccuracies in test basis coverage (e.g., missing tests for an acceptance criterion) 
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3.2. Feedback and Review Process 

3.2.1. Benefits of Early and Frequent Stakeholder Feedback 

Early and frequent feedback allows for the early communication of potential quality problems. If there is 
little stakeholder involvement during the SDLC, the product being developed might not meet the 
stakeholder’s original or current vision. A failure to deliver what the stakeholder wants can result in costly 
rework, missed deadlines, blame games, and might even lead to complete project failure.  

Frequent stakeholder feedback throughout the SDLC can prevent misunderstandings about requirements 
and ensure that changes to requirements are understood and implemented earlier. This helps the 
development team to improve their understanding of what they are building. It allows them to focus on 
those features that deliver the most value to the stakeholders and that have the most positive impact on 
identified risks. 

3.2.2. Review Process Activities 

The ISO/IEC 20246 standard defines a generic review process that provides a structured but flexible 
framework from which a specific review process may be tailored to a particular situation. If the required 
review is more formal, then more of the tasks described for the different activities will be needed.  

The size of many work products makes them too large to be covered by a single review. The review 
process may be invoked multiple times to complete the review for the entire work product.  

The activities in the review process are: 

• Planning. During the planning phase, the scope of the review, which comprises the purpose, the 
work product to be reviewed, quality characteristics to be evaluated, areas to focus on, exit 
criteria, supporting information such as standards, effort and the timeframes for the review, shall 
be defined. 

• Review initiation. During review initiation, the goal is to make sure that everyone and everything 
involved is prepared to start the review. This includes making sure that every participant has 
access to the work product under review, understands their role and responsibilities and receives 
everything needed to perform the review. 

• Individual review. Every reviewer performs an individual review to assess the quality of the work 
product under review, and to identify anomalies, recommendations, and questions by applying 
one or more review techniques (e.g., checklist-based reviewing, scenario-based reviewing). The 
ISO/IEC 20246 standard provides more depth on different review techniques. The reviewers log 
all their identified anomalies, recommendations, and questions.  

• Communication and analysis. Since the anomalies identified during a review are not 
necessarily defects, all these anomalies need to be analyzed and discussed. For every anomaly, 
the decision should be made on its status, ownership and required actions. This is typically done 
in a review meeting, during which the participants also decide what the quality level of reviewed 
work product is and what follow-up actions are required. A follow-up review may be required to 
complete actions.  
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• Fixing and reporting. For every defect, a defect report should be created so that corrective 
actions can be followed up. Once the exit criteria are reached, the work product can be accepted. 
The review results are reported. 

3.2.3. Roles and Responsibilities in Reviews 

Reviews involve various stakeholders, who may take on several roles. The principal roles and their 
responsibilities are: 

• Manager – decides what is to be reviewed and provides resources, such as staff and time for the 
review 

• Author – creates and fixes the work product under review 

• Moderator (also known as the facilitator) – ensures the effective running of review meetings, 
including mediation, time management, and a safe review environment in which everyone can 
speak freely 

• Scribe (also known as recorder) – collates anomalies from reviewers and records review 
information, such as decisions and new anomalies found during the review meeting 

• Reviewer – performs reviews. A reviewer may be someone working on the project, a subject 
matter expert, or any other stakeholder 

• Review leader – takes overall responsibility for the review such as deciding who will be involved, 
and organizing when and where the review will take place 

Other, more detailed roles are possible, as described in the ISO/IEC 20246 standard. 

3.2.4. Review Types 

There exist many review types ranging from informal reviews to formal reviews. The required level of 
formality depends on factors such as the SDLC being followed, the maturity of the development process, 
the criticality and complexity of the work product being reviewed, legal or regulatory requirements, and 
the need for an audit trail. The same work product can be reviewed with different review types, e.g., first 
an informal one and later a more formal one. 

Selecting the right review type is key to achieving the required review objectives (see section 3.2.5). The 
selection is not only based on the objectives, but also on factors such as the project needs, available 
resources, work product type and risks, business domain, and company culture.  

Some commonly used review types are: 

• Informal review. Informal reviews do not follow a defined process and do not require a formal 
documented output. The main objective is detecting anomalies. 

• Walkthrough. A walkthrough, which is led by the author, can serve many objectives, such as 
evaluating quality and building confidence in the work product, educating reviewers, gaining 
consensus, generating new ideas, motivating and enabling authors to improve and detecting 
anomalies. Reviewers might perform an individual review before the walkthrough, but this is not 
required. 
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• Technical Review. A technical review is performed by technically qualified reviewers and led by 
a moderator. The objectives of a technical review are to gain consensus and make decisions 
regarding a technical problem, but also to detect anomalies, evaluate quality and build confidence 
in the work product, generate new ideas, and to motivate and enable authors to improve. 

• Inspection. As inspections are the most formal type of review, they follow the complete generic 
process (see section 3.2.2). The main objective is to find the maximum number of anomalies. 
Other objectives are to evaluate quality, build confidence in the work product, and to motivate and 
enable authors to improve. Metrics are collected and used to improve the SDLC, including the 
inspection process. In inspections, the author cannot act as the review leader or scribe. 

3.2.5. Success Factors for Reviews 

There are several factors that determine the success of reviews, which include: 

• Defining clear objectives and measurable exit criteria. Evaluation of participants should never be 
an objective 

• Choosing the appropriate review type to achieve the given objectives, and to suit the type of work 
product, the review participants, the project needs and context 

• Performing reviews on small chunks, so that reviewers do not lose concentration during an 
individual review and/or the review meeting (when held)  

• Providing feedback from reviews to stakeholders and authors so they can improve the product 
and their activities (see section 3.2.1) 

• Providing adequate time to participants to prepare for the review 

• Support from management for the review process 

• Making reviews part of the organization’s culture, to promote learning and process improvement 

• Providing adequate training for all participants so they know how to fulfil their role 

• Facilitating meetings 
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4. Test Analysis and Design – 390 minutes 

Keywords 

acceptance criteria, acceptance test-driven development, black-box test technique, boundary value 
analysis, branch coverage, checklist-based testing, collaboration-based test approach, coverage, 
coverage item, decision table testing, equivalence partitioning, error guessing, experience-based test 
technique, exploratory testing, state transition testing, statement coverage, test technique, white-box test 
technique 

 

Learning Objectives for Chapter 4: 

4.1  Test Techniques Overview 

FL-4.1.1 (K2) Distinguish black-box test techniques, white-box test techniques and experience-based 
test techniques 

4.2  Black-box Test Techniques 

FL-4.2.1 (K3) Use equivalence partitioning to derive test cases 

FL-4.2.2 (K3) Use boundary value analysis to derive test cases 

FL-4.2.3 (K3) Use decision table testing to derive test cases 

FL-4.2.4 (K3) Use state transition testing to derive test cases 

4.3  White-box Test Techniques 

FL-4.3.1 (K2) Explain statement testing 

FL-4.3.2 (K2) Explain branch testing 

FL-4.3.3 (K2) Explain the value of white-box testing 

4.4  Experience-based Test Techniques 

FL-4.4.1 (K2) Explain error guessing 

FL-4.4.2 (K2) Explain exploratory testing 

FL-4.4.3 (K2) Explain checklist-based testing 

4.5. Collaboration-based Test Approaches 

FL-4.5.1 (K2) Explain how to write user stories in collaboration with developers and business 
representatives 

FL-4.5.2 (K2) Classify the different options for writing acceptance criteria 

FL-4.5.3 (K3) Use acceptance test-driven development (ATDD) to derive test cases  
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4.1. Test Techniques Overview 
Test techniques support the tester in test analysis (what to test) and in test design (how to test). Test 
techniques help to develop a relatively small, but sufficient, set of test cases in a systematic way. Test 
techniques also help the tester to define test conditions, identify coverage items, and identify test data 
during the test analysis and design. Further information on test techniques can be found in the 
ISO/IEC/IEEE 29119-4 standard, and in (Beizer 1990, Craig 2002, Copeland 2004, Koomen 2006, 
Jorgensen 2014, Ammann 2016, Forgács 2019). 

In this syllabus, test techniques are classified as black-box, white-box, and experience-based. 

Black-box test techniques (also known as specification-based techniques) are based on an analysis of 
the specified behavior of the test object without reference to its internal structure. Therefore, the test 
cases are independent of how the software is implemented. Consequently, if the implementation 
changes, but the required behavior stays the same, then the test cases are still useful.  

White-box test techniques (also known as structure-based techniques) are based on an analysis of the 
test object’s internal structure and processing. As the test cases are dependent on how the software is 
designed, they can only be created after the design or implementation of the test object.  

Experience-based test techniques effectively use the knowledge and experience of testers for the 
design and implementation of test cases. The effectiveness of these test techniques depends heavily on 
the tester’s skills. Experience-based test techniques can detect defects that may be missed using the 
black-box test techniques and white-box test techniques. Hence, experience-based test techniques are 
complementary to the black-box test techniques and white-box test techniques. 

4.2. Black-Box Test Techniques 
Commonly used black-box test techniques discussed in the following sections are: 

• Equivalence Partitioning 

• Boundary Value Analysis 

• Decision Table Testing 

• State Transition Testing 

4.2.1. Equivalence Partitioning 

Equivalence Partitioning (EP) divides data into partitions (known as equivalence partitions) based on the 
expectation that all the elements of a given partition are to be processed in the same way by the test 
object. The theory behind this technique is that if a test case, that tests one value from an equivalence 
partition, detects a defect, this defect should also be detected by test cases that test any other value from 
the same partition. Therefore, one test for each partition is sufficient.  

Equivalence partitions can be identified for any data element related to the test object, including inputs, 
outputs, configuration items, internal values, time-related values, and interface parameters. The partitions 
may be continuous or discrete, ordered or unordered, finite or infinite. The partitions must not overlap and 
must be non-empty sets. 
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For simple test items, EP can be easy, but in practice, understanding how the test object will treat 
different values is often complicated. Therefore, partitioning should be done with care. 

A partition containing valid values is called a valid partition. A partition containing invalid values is called 
an invalid partition. The definitions of valid and invalid values may vary among teams and organizations. 
For example, valid values may be interpreted as those that should be processed by the test object or as 
those for which the specification defines their processing. Invalid values may be interpreted as those that 
should be ignored or rejected by the test object or as those for which no processing is defined in the test 
object specification. 

In EP, the coverage items are the equivalence partitions. To achieve 100% coverage with this test 
technique, test cases must exercise all identified partitions (including invalid partitions) by covering each 
partition at least once. Coverage is measured as the number of partitions exercised by at least one test 
case, divided by the total number of identified partitions, and is expressed as a percentage. 

Many test items include multiple sets of partitions (e.g., test items with more than one input parameter), 
which means that a test case will cover partitions from different sets of partitions. The simplest coverage 
criterion in the case of multiple sets of partitions is called Each Choice coverage (Ammann 2016). Each 
Choice coverage requires test cases to exercise each partition from each set of partitions at least once. 
Each Choice coverage does not take into account combinations of partitions.  

4.2.2. Boundary Value Analysis 

Boundary Value Analysis (BVA) is a test technique based on exercising the boundaries of equivalence 
partitions. Therefore, BVA can only be used for ordered partitions. The minimum and maximum values of 
a partition are its boundary values. In the case of BVA, if two elements belong to the same partition, all 
elements between them must also belong to that partition. 

BVA focuses on the boundary values of the partitions because developers are more likely to make errors 
with these boundary values. Typical defects found by BVA are located where implemented boundaries 
are misplaced to positions above or below their intended positions or are omitted altogether.  

This syllabus covers two versions of the BVA: 2-value and 3-value BVA. They differ in terms of coverage 
items per boundary that need to be exercised to achieve 100% coverage. 

In 2-value BVA (Craig 2002, Myers 2011), for each boundary value there are two coverage items: this 
boundary value and its closest neighbor belonging to the adjacent partition. To achieve 100% coverage 
with 2-value BVA, test cases must exercise all coverage items, i.e., all identified boundary values. 
Coverage is measured as the number of boundary values that were exercised, divided by the total 
number of identified boundary values, and is expressed as a percentage. 

In 3-value BVA (Koomen 2006, O’Regan 2019), for each boundary value there are three coverage items: 
this boundary value and both its neighbors. Therefore, in 3-value BVA some of the coverage items may 
not be boundary values. To achieve 100% coverage with 3-value BVA, test cases must exercise all 
coverage items, i.e., identified boundary values and their neighbors. Coverage is measured as the 
number of boundary values and their neighbors exercised, divided by the total number of identified 
boundary values and their neighbors, and is expressed as a percentage. 

3-value BVA is more rigorous than 2-value BVA as it may detect defects overlooked by 2-value BVA. For 
example, if the decision “if (x ≤ 10) …” is incorrectly implemented as “if (x = 10) …”, no test data derived 
from the 2-value BVA (x = 10, x = 11) can detect the defect. However, x = 9, derived from the 3-value 
BVA, is likely to detect it. 
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4.2.3. Decision Table Testing  

Decision tables are used for testing the implementation of requirements that specify how different 
combinations of conditions result in different outcomes. Decision tables are an effective way of recording 
complex logic, such as business rules. 

When creating decision tables, the conditions and the resulting actions of the system are defined. These 
form the rows of the table. Each column corresponds to a decision rule that defines a unique combination 
of conditions, along with the associated actions. In limited-entry decision tables all the values of the 
conditions and actions (except for irrelevant or infeasible ones; see below) are shown as Boolean values 
(true or false). Alternatively, in extended-entry decision tables some or all the conditions and actions may 
also take on multiple values (e.g., ranges of numbers, equivalence partitions, discrete values). 

The notation for conditions is as follows: “T” (true) means that the condition is satisfied. “F” (false) means 
that the condition is not satisfied. “–” means that the value of the condition is irrelevant for the action 
outcome. “N/A” means that the condition is infeasible for a given rule. For actions: “X” means that the 
action should occur. Blank means that the action should not occur. Other notations may also be used. 

A full decision table has enough columns to cover every combination of conditions. The table can be 
simplified by deleting columns containing infeasible combinations of conditions. The table can also be 
minimized by merging columns, in which some conditions do not affect the outcome, into a single column. 
Decision table minimization algorithms are out of scope of this syllabus. 

In decision table testing, the coverage items are the columns containing feasible combinations of 
conditions. To achieve 100% coverage with this technique, test cases must exercise all these columns. 
Coverage is measured as the number of exercised columns, divided by the total number of feasible 
columns, and is expressed as a percentage. 

The strength of decision table testing is that it provides a systematic approach to identify all the 
combinations of conditions, some of which might otherwise be overlooked. It also helps to find any gaps 
or contradictions in the requirements. If there are many conditions, exercising all the decision rules may 
be time consuming, since the number of rules grows exponentially with the number of conditions. In such 
a case, to reduce the number of rules that need to be exercised, a minimized decision table or a risk-
based approach may be used. 

4.2.4. State Transition Testing 

A state diagram models the behavior of a system by showing its possible states and valid state 
transitions. A transition is initiated by an event, which may be additionally qualified by a guard condition. 
The transitions are assumed to be instantaneous and may sometimes result in the software taking action. 
The common transition labeling syntax is as follows: “event [guard condition] / action”. Guard conditions 
and actions can be omitted if they do not exist or are irrelevant for the tester.  

A state table is a model equivalent to a state diagram. Its rows represent states, and its columns 
represent events (together with guard conditions if they exist). Table entries (cells) represent transitions, 
and contain the target state, as well as the resulting actions, if defined. In contrast to the state diagram, 
the state table explicitly shows invalid transitions, which are represented by empty cells. 

A test case based on a state diagram or state table is usually represented as a sequence of events, 
which results in a sequence of state changes (and actions, if needed). One test case may, and usually 
will, cover several transitions between states.  

There exist many coverage criteria for state transition testing. This syllabus discusses three of them. 
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In all states coverage, the coverage items are the states. To achieve 100% all states coverage, test 
cases must ensure that all the states are exercised. Coverage is measured as the number of exercised 
states divided by the total number of states and is expressed as a percentage. 

In valid transitions coverage (also called 0-switch coverage), the coverage items are single valid 
transitions. To achieve 100% valid transitions coverage, test cases must exercise all the valid transitions. 
Coverage is measured as the number of exercised valid transitions divided by the total number of valid 
transitions and is expressed as a percentage.  

In all transitions coverage, the coverage items are all the transitions shown in a state table. To achieve 
100% all transitions coverage, test cases must exercise all the valid transitions and attempt to execute 
invalid transitions. Testing only one invalid transition in a single test case helps to avoid defect masking, 
i.e., a situation in which one defect prevents the detection of another. Coverage is measured as the 
number of valid and invalid transitions exercised or attempted to be covered by executed test cases, 
divided by the total number of valid and invalid transitions, and is expressed as a percentage. 

All states coverage is weaker than valid transitions coverage, because it can typically be achieved without 
exercising all the transitions. Valid transitions coverage is the most widely used coverage criterion. 
Achieving full valid transitions coverage guarantees full all states coverage. Achieving full all transitions 
coverage guarantees both full all states coverage and full valid transitions coverage and should be a 
minimum requirement for mission and safety-critical software.  

4.3. White-Box Test Techniques 
Because of their popularity and simplicity, this section focuses on two code-related white-box test 
techniques: 

• Statement testing 

• Branch testing 

There are more rigorous white-box test techniques that are used in some safety-critical, mission-critical, 
or high-integrity environments to achieve more thorough code coverage. There are also white-box test 
techniques used in higher test levels (e.g., API testing), or using coverage not related to code (e.g., 
neuron coverage in neural network testing). These techniques are not discussed in this syllabus. 

4.3.1. Statement Testing and Statement Coverage  

In statement testing, the coverage items are executable statements. The aim is to design test cases that 
exercise statements in the code until an acceptable level of coverage is achieved. Coverage is measured 
as the number of statements exercised by the test cases divided by the total number of executable 
statements in the code, and is expressed as a percentage. 

When 100% statement coverage is achieved, it ensures that all executable statements in the code have 
been exercised at least once. In particular, this means that each statement with a defect will be executed, 
which may cause a failure demonstrating the presence of the defect. However, exercising a statement 
with a test case will not detect defects in all cases. For example, it may not detect defects that are data 
dependent (e.g., a division by zero that only fails when a denominator is set to zero). Also, 100% 
statement coverage does not ensure that all the decision logic has been tested as, for instance, it may not 
exercise all the branches (see chapter 4.3.2) in the code.  
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4.3.2. Branch Testing and Branch Coverage  

A branch is a transfer of control between two nodes in the control flow graph, which shows the possible 
sequences in which source code statements are executed in the test object. Each transfer of control can 
be either unconditional (i.e., straight-line code) or conditional (i.e., a decision outcome). 

In branch testing the coverage items are branches and the aim is to design test cases to exercise 
branches in the code until an acceptable level of coverage is achieved. Coverage is measured as the 
number of branches exercised by the test cases divided by the total number of branches and is 
expressed as a percentage. 

When 100% branch coverage is achieved, all branches in the code, unconditional and conditional, are 
exercised by test cases. Conditional branches typically correspond to a true or false outcome from an 
“if...then” decision, an outcome from a switch/case statement, or a decision to exit or continue in a loop. 
However, exercising a branch with a test case will not detect defects in all cases. For example, it may not 
detect defects requiring the execution of a specific path in a code. 

Branch coverage subsumes statement coverage. This means that any set of test cases achieving 100% 
branch coverage also achieves 100% statement coverage (but not vice versa). 

4.3.3. The Value of White-box Testing  

A fundamental strength that all white-box test techniques share is that the entire software implementation 
is taken into account during testing, which facilitates defect detection even when the software 
specification is vague, outdated or incomplete. A corresponding weakness is that if the software does not 
implement one or more requirements, white-box testing may not detect the resulting defects of omission 
(Watson 1996). 

White-box test techniques can be used in static testing (e.g., during dry runs of code). They are well 
suited to reviewing code not yet ready for execution (Hetzel 1988), pseudocode and other high-level or 
top-down logic which can be modeled with a control flow graph. 

Performing only black-box testing does not provide a measure of actual code coverage. White-box 
coverage measures provide an objective measurement of coverage and the necessary information to 
allow additional tests to be generated to increase this coverage, and subsequently increase confidence in 
the code. 

4.4. Experience-based Test Techniques  
Commonly used experience-based test techniques discussed in the following sections are: 

• Error guessing 

• Exploratory testing 

• Checklist-based testing 

4.4.1. Error Guessing 

Error guessing is a test technique used to anticipate the occurrence of errors, defects, and failures, based 
on the tester’s knowledge, including: 
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• How the application has worked in the past 

• The types of errors the developers tend to make and the types of defects that result from these 
errors 

• The types of failures that have occurred in other, similar applications 

In general, errors, defects and failures may be related to: input (e.g., correct input not accepted, 
parameters wrong or missing), output (e.g., wrong format, wrong result), logic (e.g., missing cases, wrong 
operator), computation (e.g., incorrect operand, wrong computation), interfaces (e.g., parameter 
mismatch, incompatible types), or data (e.g., incorrect initialization, wrong type). 

Fault attacks are a way to implement error guessing. This test technique requires the tester to create or 
acquire a list of possible errors, defects and failures, and to design tests that will identify defects 
associated with the errors, expose the defects, or cause the failures. These lists can be built based on 
experience, defect and failure data, or from common knowledge about why software fails. 

See (Whittaker 2002, Whittaker 2003, Andrews 2006) for more information on error guessing and fault 
attacks. 

4.4.2. Exploratory Testing 

In exploratory testing, tests are simultaneously designed, executed, and evaluated while the tester learns 
about the test object. The testing is used to learn more about the test object, to explore it more deeply 
with focused tests, and to create tests for untested areas. 

Exploratory testing is sometimes performed using session-based testing to structure the testing. In a 
session-based approach, exploratory testing is performed within a defined time box. The tester uses a 
test charter containing test objectives to guide the testing. The test session is usually followed by a 
debriefing that involves a discussion between the tester and stakeholders interested in the test results of 
the test session. In this approach test objectives may be treated as high-level test conditions. Coverage 
items are identified and exercised during the test session. The tester may use test session sheets to 
document the steps followed and the discoveries made. 

Exploratory testing is useful when there are few or inadequate specifications or there is significant time 
pressure on the testing. Exploratory testing is also useful to complement other more formal test 
techniques. Exploratory testing will be more effective if the tester is experienced, has domain knowledge 
and has a high degree of essential skills, like analytical skills, curiosity and creativeness (see section 
1.5.1). 

Exploratory testing can incorporate the use of other test techniques (e.g., equivalence partitioning). More 
information about exploratory testing can be found in (Kaner 1999, Whittaker 2009, Hendrickson 2013). 

4.4.3. Checklist-Based Testing 

In checklist-based testing, a tester designs, implements, and executes tests to cover test conditions from 
a checklist. Checklists can be built based on experience, knowledge about what is important for the user, 
or an understanding of why and how software fails. Checklists should not contain items that can be 
checked automatically, items better suited as entry criteria, exit criteria, or items that are too general 
(Brykczynski 1999). 
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Checklist items are often phrased in the form of a question. It should be possible to check each item 
separately and directly. These items may refer to requirements, graphical interface properties, quality 
characteristics or other forms of test conditions. Checklists can be created to support various test types, 
including functional and non-functional testing (e.g., 10 heuristics for usability testing (Nielsen 1994)). 

Some checklist entries may gradually become less effective over time because the developers will learn 
to avoid making the same errors. New entries may also need to be added to reflect newly found high 
severity defects. Therefore, checklists should be regularly updated based on defect analysis. However, 
care should be taken to avoid letting the checklist become too long (Gawande 2009).  

In the absence of detailed test cases, checklist-based testing can provide guidelines and some degree of 
consistency for the testing. If the checklists are high-level, some variability in the actual testing is likely to 
occur, resulting in potentially greater coverage but less repeatability. 

4.5. Collaboration-based Test Approaches 
Each of the above-mentioned test techniques (see sections 4.2, 4.3, 4.4) has a particular objective with 
respect to defect detection. Collaboration-based approaches, on the other hand, focus also on defect 
avoidance by collaboration and communication. 

4.5.1. Collaborative User Story Writing 

A user story represents a feature that will be valuable to either a user or purchaser of a system or 
software. User stories have three critical aspects (Jeffries 2000), called together the “3 C’s”: 

• Card – the medium describing a user story (e.g., an index card, an entry in an electronic board)  

• Conversation – explains how the software will be used (can be documented or verbal)  

• Confirmation – the acceptance criteria (see section 4.5.2) 

The most common format for a user story is “As a [role], I want [goal to be accomplished], so that I can 
[resulting business value for the role]”, followed by the acceptance criteria. 

Collaborative authorship of the user story can use techniques such as brainstorming and mind mapping. 
The collaboration allows the team to obtain a shared vision of what should be delivered, by taking into 
account three perspectives: business, development and testing. 

Good user stories should be: Independent, Negotiable, Valuable, Estimable, Small and Testable 
(INVEST). If a stakeholder does not know how to test a user story, this may indicate that the user story is 
not clear enough, or that it does not reflect something valuable to them, or that the stakeholder just needs 
help in testing (Wake 2003). 

4.5.2. Acceptance Criteria 

Acceptance criteria for a user story are the conditions that an implementation of the user story must meet 
to be accepted by stakeholders. From this perspective, acceptance criteria may be viewed as the test 
conditions that should be exercised by the tests. Acceptance criteria are usually a result of the 
Conversation (see section 4.5.1).  

Acceptance criteria are used to: 
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• Define the scope of the user story  

• Reach consensus among the stakeholders 

• Describe both positive and negative scenarios  

• Serve as a basis for the user story acceptance testing (see section 4.5.3)  

• Allow accurate planning and estimation  

There are several ways to write acceptance criteria for a user story. The two most common formats are: 

• Scenario-oriented (e.g., Given/When/Then format used in BDD, see section 2.1.3)  

• Rule-oriented (e.g., bullet point verification list, or tabulated form of input-output mapping)  

Most acceptance criteria can be documented in one of these two formats. However, the team may use 
another, custom format, as long as the acceptance criteria are well-defined and unambiguous. 

4.5.3. Acceptance Test-driven Development (ATDD)  

ATDD is a test-first approach (see section 2.1.3). Test cases are created prior to implementing the user 
story. The test cases are created by team members with different perspectives, e.g., customers, 
developers, and testers (Adzic 2009). Test cases may be executed manually or automated.  

The first step is a specification workshop where the user story and (if not yet defined) its acceptance 
criteria are analyzed, discussed, and written by the team members. Incompleteness, ambiguities, or 
defects in the user story are resolved during this process. The next step is to create the test cases. This 
can be done by the team as a whole or by the tester individually. The test cases are based on the 
acceptance criteria and can be seen as examples of how the software works. This will help the team 
implement the user story correctly. 

Since examples and tests are the same, these terms are often used interchangeably. During the test 
design the test techniques described in sections 4.2, 4.3 and 4.4 may be applied. 

Typically, the first test cases are positive, confirming the correct behavior without exceptions or error 
conditions, and comprising the sequence of activities executed if everything goes as expected. After the 
positive test cases are done, the team should perform negative testing. Finally, the team should cover 
non-functional quality characteristics (e.g., performance efficiency, usability). Test cases should be 
expressed in a way that is understandable for the stakeholders. Typically, test cases contain sentences in 
natural language involving the necessary preconditions (if any), the inputs, and the postconditions.  

The test cases must cover all the characteristics of the user story and should not go beyond the story. 
However, the acceptance criteria may detail some of the issues described in the user story. In addition, 
no two test cases should describe the same characteristics of the user story.  

When captured in a format supported by a test automation framework, the developers can automate the 
test cases by writing the supporting code as they implement the feature described by a user story. The 
acceptance tests then become executable requirements.  
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5. Managing the Test Activities – 335 minutes 

Keywords 

defect management, defect report, entry criteria, exit criteria, product risk, project risk, risk, risk analysis, 
risk assessment, risk control, risk identification, risk level, risk management, risk mitigation, risk 
monitoring, risk-based testing, test approach, test completion report, test control, test monitoring, test 
plan, test planning, test progress report, test pyramid, test strategy, testing quadrants 

 

Learning Objectives for Chapter 5: 

5.1 Test Planning 

FL-5.1.1  (K2) Exemplify the purpose and content of a test plan  

FL-5.1.2 (K1) Recognize how a tester adds value to iteration and release planning 

FL-5.1.3 (K2) Compare and contrast entry criteria and exit criteria 

FL-5.1.4 (K3) Use estimation techniques to calculate the required test effort 

FL-5.1.5  (K3) Apply test case prioritization 

FL-5.1.6  (K1) Recall the concepts of the test pyramid 

FL-5.1.7 (K2) Summarize the testing quadrants and their relationships with test levels and test types 

5.2 Risk Management 

FL-5.2.1 (K1) Identify risk level by using risk likelihood and risk impact  

FL-5.2.2 (K2) Distinguish between project risks and product risks 

FL-5.2.3 (K2) Explain how product risk analysis may influence thoroughness and test scope 

FL-5.2.4 (K2) Explain what measures can be taken in response to analyzed product risks 

5.3 Test Monitoring, Test Control and Test Completion 

FL-5.3.1 (K1) Recall metrics used for testing 

FL-5.3.2 (K2) Summarize the purposes, content, and audiences for test reports 

FL-5.3.3 (K2) Exemplify how to communicate the status of testing 

5.4 Configuration Management 

FL-5.4.1  (K2) Summarize how configuration management supports testing 

5.5 Defect Management 

FL-5.5.1  (K3) Prepare a defect report  
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5.1. Test Planning 

5.1.1. Purpose and Content of a Test Plan 

A test plan describes the test objectives, resources and processes for a test project. A test plan: 

• Documents the means and schedule for achieving test objectives 

• Helps to ensure that the performed test activities will meet the established criteria 

• Serves as a means of communication with team members and other stakeholders 

• Demonstrates that testing will adhere to the existing test policy and test strategy (or explains why 
the testing will deviate from them) 

Test planning guides the testers’ thinking and forces the testers to confront the future challenges related 
to risks, schedules, people, tools, costs, effort, etc. The process of preparing a test plan is a useful way to 
think through the efforts needed to achieve the test objectives. 

The typical content of a test plan includes: 

• Context of testing (e.g., test scope, test objectives, test basis) 

• Assumptions and constraints of the test project 

• Stakeholders (e.g., roles, responsibilities, relevance to testing, hiring and training needs) 

• Communication (e.g., forms and frequency of communication, documentation templates) 

• Risk register (e.g., product risks, project risks) 

• Test approach (e.g., test levels, test types, test techniques, test deliverables, entry criteria and 
exit criteria, independence of testing, metrics to be collected, test data requirements, test 
environment requirements, deviations from the test policy and test strategy) 

• Budget and schedule 

More details about the test plan and its content can be found in the ISO/IEC/IEEE 29119-3 standard. 

5.1.2. Tester's Contribution to Iteration and Release Planning 

In iterative SDLCs, typically two kinds of planning occur: release planning and iteration planning.  

Release planning looks ahead to the release of a product, defines and re-defines the product backlog, 
and may involve refining larger user stories into a set of smaller user stories. It also serves as the basis 
for the test approach and test plan across all iterations. Testers involved in release planning participate in 
writing testable user stories and acceptance criteria (see section 4.5), participate in project and quality 
risk analyses (see section 5.2), estimate test effort associated with user stories (see section 5.1.4), 
determine the test approach, and plan the testing for the release. 

Iteration planning looks ahead to the end of a single iteration and is concerned with the iteration backlog. 
Testers involved in iteration planning participate in the detailed risk analysis of user stories, determine the 
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testability of user stories, break down user stories into tasks (particularly testing tasks), estimate test effort 
for all testing tasks, and identify and refine functional and non-functional aspects of the test object. 

5.1.3. Entry Criteria and Exit Criteria 

Entry criteria define the preconditions for undertaking a given activity. If entry criteria are not met, it is 
likely that the activity will prove to be more difficult, time-consuming, costly, and riskier. Exit criteria define 
what must be achieved to declare an activity completed. Entry criteria and exit criteria should be defined 
for each test level, and will differ based on the test objectives. 

Typical entry criteria include: availability of resources (e.g., people, tools, environments, test data, budget, 
time), availability of testware (e.g., test basis, testable requirements, user stories, test cases), and initial 
quality level of a test object (e.g., all smoke tests have passed). 

Typical exit criteria include: measures of thoroughness (e.g., achieved level of coverage, number of 
unresolved defects, defect density, number of failed test cases), and binary “yes/no” criteria (e.g., planned 
tests have been executed, static testing has been performed, all defects found are reported, all 
regression tests are automated). 

Running out of time or budget can also be viewed as valid exit criteria. Even without other exit criteria 
being satisfied, it can be acceptable to end testing under such circumstances, if the stakeholders have 
reviewed and accepted the risk to go live without further testing.  

In Agile software development, exit criteria are often called Definition of Done, defining the team’s 
objective metrics for a releasable item. Entry criteria that a user story must fulfill to start the development 
and/or testing activities are called Definition of Ready. 

5.1.4. Estimation Techniques 

Test effort estimation involves predicting the amount of test-related work needed to meet the test 
objectives of a test project. It is important to make it clear to the stakeholders that the estimate is based 
on a number of assumptions and is always subject to estimation error. Estimation for small tasks is 
usually more accurate than for the large ones. Therefore, when estimating a large task, it can be 
decomposed into a set of smaller tasks which then in turn can be estimated. 

In this syllabus, the following four estimation techniques are described. 

Estimation based on ratios. In this metrics-based technique, figures are collected from previous projects 
within the organization, which makes it possible to derive “standard” ratios for similar projects. The ratios 
of an organization’s own projects (e.g., taken from historical data) are generally the best source to use in 
the estimation process. These standard ratios can then be used to estimate the test effort for the new 
project. For example, if in the previous project the development-to-test effort ratio was 3:2, and in the 
current project the development effort is expected to be 600 person-days, the test effort can be estimated 
to be 400 person-days. 

Extrapolation. In this metrics-based technique, measurements are made as early as possible in the 
current project to gather the data. Having enough observations, the effort required for the remaining work 
can be approximated by extrapolating this data (usually by applying a mathematical model). This method 
is very suitable in iterative SDLCs. For example, the team may extrapolate the test effort in the 
forthcoming iteration as the averaged effort from the last three iterations. 
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Wideband Delphi. In this iterative, expert-based technique, experts make experience-based estimations. 
Each expert, in isolation, estimates the effort. The results are collected and if there are deviations of an 
expert’s estimate that are out of range of the agreed upon boundaries, the experts discuss their current 
estimates. Each expert is then asked to make a new estimation based on that feedback, again in 
isolation. This process is repeated until a consensus is reached. Planning Poker is a variant of Wideband 
Delphi, commonly used in Agile software development. In Planning Poker, estimates are usually made 
using cards with numbers that represent the effort size. 

Three-point estimation. In this expert-based technique, three estimations are made by the experts: the 
most optimistic estimation (a), the most likely estimation (m) and the most pessimistic estimation (b). The 
final estimate (E) is their weighted arithmetic mean. In the most popular version of this technique, the 
estimate is calculated as E = (a + 4*m + b) / 6. The advantage of this technique is that it allows the 
experts to calculate the measurement error: SD = (b – a) / 6. For example, if the estimates (in person-
hours) are: a=6, m=9 and b=18, then the final estimation is 10±2 person-hours (i.e., between 8 and 12 
person-hours), because E = (6 + 4*9 + 18) / 6 = 10 and SD = (18 – 6) / 6 = 2. 

See (Kan 2003, Koomen 2006, Westfall 2009) for these and many other test estimation techniques. 

5.1.5. Test Case Prioritization 

Once the test cases and test procedures are specified and assembled into test suites, these test suites 
can be arranged in a test execution schedule that defines the order in which they are to be run. When 
prioritizing test cases, different factors can be taken into account. The most commonly used test case 
prioritization strategies are as follows: 

• Risk-based prioritization, where the order of test execution is based on the results of risk analysis 
(see section 5.2.3). Test cases covering the most important risks are executed first. 

• Coverage-based prioritization, where the order of test execution is based on coverage (e.g., 
statement coverage). Test cases achieving the highest coverage are executed first. In another 
variant, called additional coverage prioritization, the test case achieving the highest coverage is 
executed first; each subsequent test case is the one that achieves the highest additional 
coverage. 

• Requirements-based prioritization, where the order of test execution is based on the priorities of 
the requirements traced back to the corresponding test cases. Requirement priorities are defined 
by stakeholders. Test cases related to the most important requirements are executed first. 

Ideally, test cases would be ordered to run based on their priority levels, using, for example, one of the 
above-mentioned prioritization strategies. However, this practice may not work if the test cases or the 
features being tested have dependencies. If a test case with a higher priority is dependent on a test case 
with a lower priority, the lower priority test case must be executed first.  

The order of test execution must also take into account the availability of resources. For example, the 
required test tools, test environments or people that may only be available for a specific time window. 

5.1.6. Test Pyramid 

The test pyramid is a model showing that different tests may have different granularity. The test pyramid 
model supports the team in test automation and in test effort allocation by showing that different test 
objectives are supported by different levels of test automation. The pyramid layers represent groups of 
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tests. The higher the layer, the lower the test granularity, the lower the test isolation (i.e., the degree of 
dependency on other elements of the system) and the higher the test execution time. Tests in the bottom 
layer are small, isolated, fast, and check a small piece of functionality, so usually a lot of them are needed 
to achieve a reasonable coverage. The top layer represents complex, high-level, end-to-end tests. These 
high-level tests are generally slower than the tests from the lower layers, and they typically check a large 
piece of functionality, so usually just a few of them are needed to achieve a reasonable level of coverage. 
The number and naming of the layers may differ. For example, the original test pyramid model (Cohn 
2009) defines three layers: “unit tests”, “service tests” and “UI tests”. Another popular model defines unit 
(component) tests, integration (component integration) tests, and end-to-end tests. Other test levels (see 
section 2.2.1) can also be used. 

5.1.7. Testing Quadrants 

The testing quadrants, defined by Brian Marick (Marick 2003, Crispin 2008), group the test levels with the 
appropriate test types, activities, test techniques and work products in the Agile software development. 
The model supports test management in visualizing these to ensure that all appropriate test types and 
test levels are included in the SDLC and in understanding that some test types are more relevant to 
certain test levels than others. This model also provides a way to differentiate and describe the test types 
to all stakeholders, including developers, testers, and business representatives.  

In this model, tests can be business facing or technology facing. Tests can also support the team (i.e., 
guide the development) or critique the product (i.e., measure its behavior against the expectations). The 
combination of these two viewpoints determines the four quadrants: 

• Quadrant Q1 (technology facing, support the team). This quadrant contains component tests and 
component integration tests. These tests should be automated and included in the CI process. 

• Quadrant Q2 (business facing, support the team). This quadrant contains functional tests, 
examples, user story tests, user experience prototypes, API testing, and simulations. These tests 
check the acceptance criteria and can be manual or automated. 

• Quadrant Q3 (business facing, critique the product). This quadrant contains exploratory testing, 
usability testing, user acceptance testing. These tests are user-oriented and often manual. 

• Quadrant Q4 (technology facing, critique the product). This quadrant contains smoke tests and 
non-functional tests (except usability tests). These tests are often automated. 

5.2. Risk Management 
Organizations face many internal and external factors that make it uncertain whether and when they will 
achieve their objectives (ISO 31000). Risk management allows the organizations to increase the 
likelihood of achieving objectives, improve the quality of their products and increase the stakeholders’ 
confidence and trust.  

The main risk management activities are: 

• Risk analysis (consisting of risk identification and risk assessment; see section 5.2.3) 

• Risk control (consisting of risk mitigation and risk monitoring; see section 5.2.4) 

The test approach, in which test activities are selected, prioritized, and managed based on risk analysis 
and risk control, is called risk-based testing. 
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5.2.1. Risk Definition and Risk Attributes 

Risk is a potential event, hazard, threat, or situation whose occurrence causes an adverse effect. A risk 
can be characterized by two factors: 

• Risk likelihood – the probability of the risk occurrence (greater than zero and less than one) 

• Risk impact (harm) – the consequences of this occurrence 

These two factors express the risk level, which is a measure for the risk. The higher the risk level, the 
more important is its treatment. 

5.2.2. Project Risks and Product Risks 

In software testing one is generally concerned with two types of risks: project risks and product risks. 

Project risks are related to the management and control of the project. Project risks include: 

• Organizational issues (e.g., delays in work products deliveries, inaccurate estimates, cost cutting) 

• People issues (e.g., insufficient skills, conflicts, communication problems, shortage of staff) 

• Technical issues (e.g., scope creep, poor tool support) 

• Supplier issues (e.g., third-party delivery failure, bankruptcy of the supporting company) 

Project risks, when they occur, may have an impact on the project schedule, budget or scope, which 
affects the project's ability to achieve its objectives. 

Product risks are related to the product quality characteristics (e.g., described in the ISO 25010 quality 
model). Examples of product risks include: missing or wrong functionality, incorrect calculations, runtime 
errors, poor architecture, inefficient algorithms, inadequate response time, poor user experience, security 
vulnerabilities. Product risks, when they occur, may result in various negative consequences, including: 

• User dissatisfaction 

• Loss of revenue, trust, reputation 

• Damage to third parties 

• High maintenance costs, overload of the help desk 

• Criminal penalties 

• In extreme cases, physical damage, injuries or even death 

5.2.3. Product Risk Analysis 

From a testing perspective, the goal of product risk analysis is to provide an awareness of product risk to 
focus the test effort in a way that minimizes the residual level of product risk. Ideally, product risk analysis 
begins early in the SDLC. 

Product risk analysis consists of risk identification and risk assessment. Risk identification is about 
generating a comprehensive list of risks. Stakeholders can identify risks by using various techniques and 
tools, e.g., brainstorming, workshops, interviews, or cause-effect diagrams. Risk assessment involves: 
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categorization of identified risks, determining their risk likelihood, risk impact and risk level, prioritizing, 
and proposing ways to handle them. Categorization helps in assigning mitigation actions, because usually 
risks falling into the same category can be mitigated using a similar approach.  

Risk assessment can use a quantitative or qualitative approach, or a mix of them. In the quantitative 
approach the risk level is calculated as the multiplication of risk likelihood and risk impact. In the 
qualitative approach the risk level can be determined using a risk matrix. 

Product risk analysis may influence the thoroughness and test scope. Its results are used to: 

• Determine the test scope to be carried out  

• Determine the particular test levels and propose test types to be performed  

• Determine the test techniques to be employed and the coverage to be achieved 

• Estimate the test effort required for each task 

• Prioritize testing in an attempt to find the critical defects as early as possible 

• Determine whether any activities in addition to testing could be employed to reduce risk 

5.2.4. Product Risk Control 

Product risk control comprises all measures that are taken in response to identified and assessed product 
risks. Product risk control consists of risk mitigation and risk monitoring. Risk mitigation involves 
implementing the actions proposed in risk assessment to reduce the risk level. The aim of risk monitoring 
is to ensure that the mitigation actions are effective, to obtain further information to improve risk 
assessment, and to identify emerging risks. 

With respect to product risk control, once a risk has been analyzed, several response options to risk are 
possible, e.g., risk mitigation by testing, risk acceptance, risk transfer, or a contingency plan (Veenendaal 
2012). Actions that can be taken to mitigate the product risks by testing are as follows: 

• Select the testers with the right level of experience and skills, suitable for a given risk type 

• Apply an appropriate level of independence of testing 

• Perform reviews and static analysis 

• Apply the appropriate test techniques and coverage levels 

• Apply the appropriate test types addressing the affected quality characteristics 

• Perform dynamic testing, including regression testing 

5.3. Test Monitoring, Test Control and Test Completion 
Test monitoring is concerned with gathering information about testing. This information is used to assess 
test progress and to measure whether the exit criteria or the test tasks associated with the exit criteria are 
satisfied, such as meeting the targets for coverage of product risks, requirements, or acceptance criteria.  

Test control uses the information from test monitoring to provide, in a form of the control directives, 
guidance and the necessary corrective actions to achieve the most effective and efficient testing. 
Examples of control directives include: 
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• Reprioritizing tests when an identified risk becomes an issue 

• Re-evaluating whether a test item meets entry criteria or exit criteria due to rework 

• Adjusting the test schedule to address a delay in the delivery of the test environment 

• Adding new resources when and where needed 

Test completion collects data from completed test activities to consolidate experience, testware, and any 
other relevant information. Test completion activities occur at project milestones such as when a test level 
is completed, an agile iteration is finished, a test project is completed (or cancelled), a software system is 
released, or a maintenance release is completed. 

5.3.1. Metrics used in Testing 

Test metrics are gathered to show progress against the planned test schedule and budget, the current 
quality of the test object, and the effectiveness of the test activities with respect to the test objectives or 
an iteration goal. Test monitoring gathers a variety of metrics to support the test control and test 
completion.  

Common test metrics include: 

• Project progress metrics (e.g., task completion, resource usage, test effort) 

• Test progress metrics (e.g., test case implementation progress, test environment preparation 
progress, number of test cases run/not run, passed/failed, test execution time) 

• Product quality metrics (e.g., availability, response time, mean time to failure) 

• Defect metrics (e.g., number and priorities of defects found/fixed, defect density, defect detection 
percentage) 

• Risk metrics (e.g., residual risk level) 

• Coverage metrics (e.g., requirements coverage, code coverage) 

• Cost metrics (e.g., cost of testing, organizational cost of quality) 

5.3.2. Purpose, Content and Audience for Test Reports 

Test reporting summarizes and communicates test information during and after testing. Test progress 
reports support the ongoing test control and must provide enough information to make modifications to 
the test schedule, resources, or test plan, when such changes are needed due to deviation from the plan 
or changed circumstances. Test completion reports summarize a specific test activity (e.g., test level, test 
cycle, iteration) and can give information for subsequent testing.  

During test monitoring and test control, the test team generates test progress reports for stakeholders to 
keep them informed. Test progress reports are usually generated on a regular basis (e.g., daily, weekly, 
etc.) and include: 

• Testing period 

• Test progress (e.g., ahead or behind schedule), including any notable deviations 
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• Impediments for testing, and their workarounds 

• Test metrics (see section 5.3.1 for examples) 

• New and changed risks within testing period 

• Testing planned for the next period 

A test completion report is prepared during test completion, when a project, test level, or test type is 
complete and when, ideally, its exit criteria have been met. This report uses test progress reports and 
other data. Typical test completion reports include: 

• Test summary 

• Testing and product quality evaluation based on the original test plan (i.e., test objectives and exit 
criteria) 

• Deviations from the test plan (e.g., differences from the planned test schedule, duration, and 
effort). 

• Testing impediments and workarounds 

• Test metrics based on test progress reports 

• Unmitigated risks, defects not fixed 

• Lessons learned that are relevant to the testing 

Different audiences require different information in the reports and influence the degree of formality and 
the frequency of test reporting. Test progress reporting to others in the same team is often frequent and 
informal, while test completion reporting follows a set template and occurs only once.  

The ISO/IEC/IEEE 29119-3 standard includes templates and examples for test progress reports (called 
test status reports) and test completion reports. 

5.3.3. Communicating the Status of Testing 

The best means of communicating test status varies, depending on test management concerns, 
organizational test strategies, regulatory standards, or, in the case of self-organizing teams (see section 
1.5.2), on the team itself. The options include: 

• Verbal communication with team members and other stakeholders 

• Dashboards (e.g., CI/CD dashboards, task boards, and burn-down charts) 

• Electronic communication channels (e.g., email, chat)  

• Online documentation 

• Formal test reports (see section 5.3.2) 

One or more of these options can be used. More formal communication may be more appropriate for 
distributed teams where direct face-to-face communication is not always possible due to geographical 
distance or time differences. Typically, different stakeholders are interested in different types of 
information, so communication should be tailored accordingly. 
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5.4. Configuration Management 
In testing, configuration management (CM) provides a discipline for identifying, controlling, and tracking 
work products such as test plans, test strategies, test conditions, test cases, test scripts, test results, test 
logs, and test reports as configuration items. 

For a complex configuration item (e.g., a test environment), CM records the items it consists of, their 
relationships, and versions. If the configuration item is approved for testing, it becomes a baseline and 
can only be changed through a formal change control process. 

Configuration management keeps a record of changed configuration items when a new baseline is 
created. It is possible to revert to a previous baseline to reproduce previous test results. 

To properly support testing, CM ensures the following:  

• All configuration items, including test items (individual parts of the test object), are uniquely 
identified, version controlled, tracked for changes, and related to other configuration items so that 
traceability can be maintained throughout the test process  

• All identified documentation and software items are referenced unambiguously in testware 

Continuous integration, continuous delivery, continuous deployment and the associated testing are 
typically implemented as part of an automated DevOps pipeline (see section 2.1.4), in which automated 
CM is normally included. 

5.5. Defect Management 
Since one of the major test objectives is to find defects, an established defect management process is 
essential. Although we refer to "defects" here, the reported anomalies may turn out to be real defects or 
something else (e.g., false–positive result, change request) - this is resolved during the process of dealing 
with the defect reports. Anomalies may be reported during any phase of the SDLC and the form depends 
on the SDLC. At a minimum, the defect management process includes a workflow for handling individual 
defects or anomalies from their discovery to their closure and rules for their classification. The workflow 
typically comprises activities to log the reported anomalies, analyze and classify them, decide on a 
suitable response such as to fix or keep it as it is and finally to close the defect report. The process must 
be followed by all involved stakeholders. It is advisable to handle defects from static testing (especially 
static analysis) in a similar way.  

Typical defect reports have the following objectives: 

• Provide those responsible for handling and resolving reported defects with sufficient information 
to resolve the issue 

• Provide a means of tracking the quality of the work product 

• Provide ideas for improvement of the development and test process 

A defect report logged during dynamic testing typically includes: 

• Unique identifier 
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• Title with a short summary of the anomaly being reported 

• Date when the anomaly was observed, issuing organization, and author, including their role  

• Identification of the test object and test environment 

• Context of the defect (e.g., test case being run, test activity being performed, SDLC phase, and 
other relevant information such as the test technique, checklist or test data being used) 

• Description of the failure to enable reproduction and resolution including the test steps that 
detected the anomaly, and any relevant test logs, database dumps, screenshots, or recordings 

• Expected results and actual results 

• Severity of the defect (degree of impact) on the interests of stakeholders or requirements 

• Priority to fix 

• Status of the defect (e.g., open, deferred, duplicate, waiting to be fixed, awaiting confirmation 
testing, re-opened, closed, rejected) 

• References (e.g., to the test case) 

Some of this data may be automatically included when using defect management tools (e.g., identifier, 
date, author and initial status). Document templates for a defect report and example defect reports can be 
found in the ISO/IEC/IEEE 29119-3 standard, which refers to defect reports as incident reports. 
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6. Test Tools – 20 minutes 

Keywords 

test automation 

 

Learning Objectives for Chapter 6: 

6.1  Tool Support for Testing 

FL-6.1.1  (K2) Explain how different types of test tools support testing  

6.2  Benefits and Risks of Test Automation 

FL-6.2.1  (K1) Recall the benefits and risks of test automation  
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6.1. Tool Support for Testing 
Test tools support and facilitate many test activities. Examples include, but are not limited to: 

• Test management tools – increase the test process efficiency by facilitating management of the 
SDLC, requirements, tests, defects, configuration 

• Static testing tools – support the tester in performing reviews and static analysis 

• Test design and test implementation tools – facilitate generation of test cases, test data and test 
procedures 

• Test execution and test coverage tools – facilitate automated test execution and coverage 
measurement 

• Non-functional testing tools – allow the tester to perform non-functional testing that is difficult or 
impossible to perform manually 

• DevOps tools – support the DevOps delivery pipeline, workflow tracking, automated build 
process(es), CI/CD 

• Collaboration tools – facilitate communication 

• Tools supporting scalability and deployment standardization (e.g., virtual machines, 
containerization tools) 

• Any other tool that assists in testing (e.g., a spreadsheet is a test tool in the context of testing) 

6.2. Benefits and Risks of Test Automation 
Simply acquiring a tool does not guarantee success. Each new tool will require effort to achieve real and 
lasting benefits (e.g., for tool introduction, maintenance and training). There are also some risks, which 
need analysis and mitigation. 

Potential benefits of using test automation include: 

• Time saved by reducing repetitive manual work (e.g., execute regression tests, re-enter the same 
test data, compare expected results vs actual results, and check against coding standards)  

• Prevention of simple human errors through greater consistency and repeatability (e.g., tests are 
consistently derived from requirements, test data is created in a systematic manner, and tests are 
executed by a tool in the same order with the same frequency)  

• More objective assessment (e.g., coverage) and providing measures that are too complicated for 
humans to determine 

• Easier access to information about testing to support test management and test reporting (e.g., 
statistics, graphs, and aggregated data about test progress, failure rates, and test execution 
duration) 

• Reduced test execution times to provide earlier defect detection, faster feedback and faster time 
to market 
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• More time for testers to design new, deeper and more effective tests 

Potential risks of using test automation include: 

• Unrealistic expectations about the benefits of a tool (including functionality and ease of use).  

• Inaccurate estimations of time, costs, effort required to introduce a tool, maintain test scripts and 
change the existing manual test process. 

• Using a test tool when manual testing is more appropriate. 

• Relying on a tool too much, e.g., ignoring the need of human critical thinking. 

• The dependency on the tool vendor which may go out of business, retire the tool, sell the tool to a 
different vendor or provide poor support (e.g., responses to queries, upgrades, and defect fixes). 

• Using an open-source software which may be abandoned, meaning that no further updates are 
available, or its internal components may require quite frequent updates as a further 
development. 

• The automation tool is not compatible with the development platform. 

• Choosing an unsuitable tool that did not comply with the regulatory requirements and/or safety 
standards.  
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8. Appendix A – Learning Objectives/Cognitive Level of 
Knowledge 

The following learning objectives are defined as applying to this syllabus. Each topic in the syllabus will 
be examined according to the learning objective for it. The learning objectives begin with an action verb 
corresponding to its cognitive level of knowledge as listed below. 

Level 1: Remember (K1) – the candidate will remember, recognize and recall a term or concept. 

Action verbs: identify, recall, remember, recognize. 

Examples: 

• “Identify typical test objectives .”  

• “Recall the concepts of the test pyramid.” 

• “Recognize how a tester adds value to iteration and release planning” 

Level 2: Understand (K2) – the candidate can select the reasons or explanations for statements related 
to the topic, and can summarize, compare, classify and give examples for the testing concept. 

Action verbs: classify, compare, contrast, differentiate, distinguish, exemplify, explain, give examples, 
interpret, summarize. 

Examples: 

• “Classify the different options for writing acceptance criteria.” 

• “Compare the different roles in testing” (look for similarities, differences or both). 

• “Distinguish between project risks and product risks” (allows concepts to be differentiated). 

• “Exemplify the purpose and content of a test plan.” 

• “Explain the impact of context on the test process.” 

• “Summarize the activities of the review process.” 

Level 3: Apply (K3) – the candidate can carry out a procedure when confronted with a familiar task, or 
select the correct procedure and apply it to a given context. 

Action verbs: apply, implement, prepare, use. 

Examples: 

• “Apply test case prioritization” (should refer to a procedure, technique, process, algorithm etc.). 

• “Prepare a defect report.” 

• “Use boundary value analysis to derive test cases.” 

References for the cognitive levels of learning objectives: 

Anderson, L. W. and Krathwohl, D. R. (eds) (2001) A Taxonomy for Learning, Teaching, and Assessing: 
A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon 
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9. Appendix B – Business Outcomes traceability matrix with Learning Objectives 

This section lists the number of Foundation Level Learning Objectives related to the Business Outcomes and the traceability between Foundation 
Level Business Outcomes and Foundation Level Learning Objectives. 
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BO1 Understand what testing is and why it is beneficial 6              

BO2 Understand fundamental concepts of software testing   22             

BO3 
Identify the test approach and activities to be implemented depending on 

the context of testing 
  6            

BO4 Assess and improve the quality of documentation     9           

BO5 Increase the effectiveness and efficiency of testing      20          

BO6 Align the test process with the software development lifecycle      6         

BO7 Understand test management principles        6        

BO8 Write and communicate clear and understandable defect reports         1       

BO9 
Understand the factors that influence the priorities and efforts related to 

testing 
        7      

BO10 Work as part of a cross-functional team          8     

BO11 Know risks and benefits related to test automation.           1    

BO12 Identify essential skills required for testing             5   

BO13 Understand the impact of risk on testing              4  

BO14 Effectively report on test progress and quality               4 
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Chapter/ 
section/ 
subsection 

Learning objective K-

level 

BUSINESS OUTCOMES 
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Chapter 1 Fundamentals of Testing                

1.1 What is Testing? 
 

              

1.1.1 Identify typical test objectives  K1 X              

1.1.2 Differentiate testing from debugging K2  X             

1.2  Why is Testing Necessary?  
 

              

1.2.1 Exemplify why testing is necessary K2 X              

1.2.2 Recall the relation between testing and quality assurance K1  X             

1.2.3 Distinguish between root cause, error, defect, and failure K2  X             

1.3 Testing Principles 
 

              

1.3.1 Explain the seven testing principles K2  X             

1.4 Test Activities, Testware and Test Roles 
 

              

1.4.1 Explain the different test activities and related tasks K2   X            

1.4.2 Explain the impact of context on the test process K2   X   X         

1.4.3 Differentiate the testware that support the test activities K2   X            

1.4.4 Explain the value of maintaining traceability K2    X X          

1.4.5 Compare the different roles in testing K2          X     
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1.5 Essential Skills and Good Practices in Testing 
 

              

1.5.1 Give examples of the generic skills required for testing K2            X   

1.5.2 Recall the advantages of the whole team approach K1          X     

1.5.3 Distinguish the benefits and drawbacks of independence of testing K2   X            

Chapter 2 Testing Throughout the Software Development Lifecycle 
 

              

2.1 Testing in the Context of a Software Development Lifecycle 
 

              

2.1.1 Explain the impact of the chosen software development lifecycle on testing K2      X         

2.1.2 Recall good testing practices that apply to all software development lifecycles K1      X         

2.1.3 Recall the examples of test-first approaches to development K1     X          

2.1.4 Summarize how DevOps might have an impact on testing K2     X X   X X     

2.1.5 Explain shift left  K2     X X         

2.1.6 Explain how retrospectives can be used as a mechanism for process improvement  K2     X     X     

2.2 Test Levels and Test Types 
 

              

2.2.1 Distinguish the different test levels K2  X X            

2.2.2 Distinguish the different test types K2  X             

2.2.3 Distinguish confirmation testing from regression testing K2  X             
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2.3 Maintenance Testing 
 

              

2.3.1 Summarize maintenance testing and its triggers K2  X     X        

Chapter 3 Static Testing 
 

              

3.1 Static Testing Basics 
 

              

3.1.1 Recognize types of work products that can be examined by static testing  K1    X X          

3.1.2 Explain the value of static testing K2 X   X X          

3.1.3 Compare and contrast static testing and dynamic testing K2    X X          

3.2 Feedback and Review Process 
 

              

3.2.1 Identify the benefits of early and frequent stakeholder feedback K1 X   X      X     

3.2.2 Summarize the activities of the review process K2   X X           

3.2.3 
Recall which responsibilities are assigned to the principal roles when performing 

reviews 

K1    X        X   

3.2.4 Compare and contrast the different review types K2  X             

3.2.5 Recall the factors that contribute to a successful review K1     X       X   

Chapter 4 Test Analysis and Design 
 

              

4.1 Test Techniques Overview 
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4.1.1 
Distinguish black-box test techniques, white-box test techniques and experience-

based test techniques 

K2  X             

4.2 Black-box Test Techniques 
 

              

4.2.1 Use equivalence partitioning to derive test cases K3     X          

4.2.2 Use boundary value analysis to derive test cases K3     X          

4.2.3 Use decision table testing to derive test cases K3     X          

4.2.4 Use state transition testing to derive test cases K3     X          

4.3 White-box Test Techniques 
 

              

4.3.1 Explain statement testing  K2  X             

4.3.2 Explain branch testing K2  X             

4.3.3 Explain the value of white-box testing K2 X X             

4.4 Experience-based Test Techniques 
 

              

4.4.1 Explain error guessing K2  X             

4.4.2 Explain exploratory testing K2  X             

4.4.3 Explain checklist-based testing K2  X             

4.5 Collaboration-based Test Approaches 
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4.5.1 
Explain how to write user stories in collaboration with developers and business 

representatives 

K2    X      X     

4.5.2 Classify the different options for writing acceptance criteria  K2          X     

4.5.3 Use acceptance test-driven development (ATDD) to derive test cases K3     X          

Chapter 5 Managing the Test Activities 
 

              

5.1 Test Planning 
 

              

5.1.1 Exemplify the purpose and content of a test plan K2  X     X        

5.1.2 Recognize how a tester adds value to iteration and release planning K1 X         X  X   

5.1.3 Compare and contrast entry criteria and exit criteria K2    X  X        X 

5.1.4 Use estimation techniques to calculate the required test effort K3       X  X      

5.1.5 Apply test case prioritization K3       X  X      

5.1.6 Recall the concepts of the test pyramid  K1  X             

5.1.7 Summarize the testing quadrants and their relationships with test levels and test types  K2  X       X      

5.2 Risk Management 
 

              

5.2.1 Identify risk level by using risk likelihood and risk impact K1       X      X  

5.2.2 Distinguish between project risks and product risks K2  X           X  
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5.2.3 Explain how product risk analysis may influence thoroughness and test scope K2     X    X    X  

5.2.4 Explain what measures can be taken in response to analyzed product risks K2  X   X        X  

5.3 Test Monitoring, Test Control and Test Completion 
 

              

5.3.1 Recall metrics used for testing K1         X     X 

5.3.2 Summarize the purposes, content, and audiences for test reports K2     X    X     X 

5.3.3 Exemplify how to communicate the status of testing K2            X  X 

5.4 Configuration Management 
 

              

5.4.1 Summarize how configuration management supports testing K2     X  X        

5.5 Defect Management 
 

              

5.5.1 Prepare a defect report K3  X      X       

Chapter 6 Test Tools 
 

              

6.1 Tool Support for Testing 
 

              

6.1.1 Explain how different types of test tools support testing K2     X          

6.2 Benefits and Risks of Test Automation 
 

              

6.2.1 Recall the benefits and risks of test automation K1     X      X    
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10. Appendix C – Release Notes  
 

ISTQB® Foundation Syllabus v4.0.1 is an errata for Foundation Level Syllabus v4.0. This errata contains 
the following changes. 

Changes in Learning Objectives wording, to align it with the glossary terms 

• FL-1.4.1: Summarize the different test activities and tasks -> Explain the different test activities and 
related tasks 

• FL-2.1.5: Explain the shift-left approach -> Explain shift left 

• FL-3.1.1: Recognize types of products that can be examined by the different static test techniques 
-> Recognize types of work products that can be examined by static testing 

• FL-3.1.3 Compare and contrast static and dynamic testing -> Compare and contrast static testing 
and dynamic testing 

• FL-4.1.1: Distinguish black-box, white-box and experience-based test techniques -> Distinguish 
black-box test techniques, white-box test techniques and experience-based test techniques 

• FL-5.2.3: Explain how product risk analysis may influence thoroughness and scope of testing -> 
Explain how product risk analysis may influence thoroughness and test scope 

Text changes to align it with the glossary terms (artifacts, documentation -> work products, level of risk 
-> risk level, goals, objectives of testing, test project objectives -> test objectives, test monitoring and control 
-> test monitoring and test control, test documentation -> testware, iterative and incremental development 
models -> iterative development models and incremental development models, test environment elements 
-> test environment items, software quality characteristics -> quality characteristics, test progress and 
completion reports -> test progress reports and test completion reports, test independence -> independence 
of testing, stage -> phase, component and component integration testing -> component testing and 
component integration testing, performance -> performance efficiency, contractual and regulatory 
acceptance testing -> contractual acceptance testing and regulatory acceptance testing, white box -> white-
box, entry/exit criteria -> entry criteria or exit criteria, organizational test policy -> test policy, shift-left, shift-
left approach, shift-left strategy -> shift left, types of tests -> test types, control of the testing -> test control, 
stage of testing -> test activity, reporting on test progress -> test progress reporting, reporting on testing for 
a completed project -> test completion reporting, false positive -> false-positive result, step -> test step, 
scope of testing -> test scope, Test design and implementation tools -> Test design and test implementation 
tools, static and dynamic testing -> testing static and dynamic testing) 

Update of ISO 25010. A new version of the ISO 25010 standard was published in 2023. It renames 
“usability” to “interaction capability”, "portability” to flexibility, and adds a new characteristic “safety”). We 
stay with the original characteristics' names, but we add the new names for usability and portability in 
section 2.2.2 

Three keywords added (test process and traceability in Chapter 1, test strategy in Chapter 5) 
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Corrections in the text 

• in 1.1.2 “cause” and “root cause” replaced with “defect” 

• In 1.4.1 the description of the activities made clearer and unambiguous 

• In 1.4.3 “automated test scripts” changed in “manual and automated test scripts” 

• In 1.4.4 detected  in “detected defects” removed 

• in 1.2.2 “QC” replaced with “testing”, because the section compares QA with testing, not with QC 

• in 2.1.3 “test cases are then automatically translated” replaced with “test cases should then be 
automatically translated” in the context of BDD 

• in 2.1.5 “the perspective of testing” changed in “the perspective of testers” 

• In 2.1.6 “post-project meetings” removed 

• in 2.2.2 the description of the test basis changed from “documentation external to the test object” 
to “documentation not related to the internal structure of the test object”, to show better the contrast 
between black-box testing and white-box testing. As well we removed system test as example for 
start early in the SDLC 

• In 3.1 business representatives was specified in more detail 

• in 3.1.2 “certain” added to “code defects can be detected using static analysis more efficiently than 
in dynamic testing”. The previous text suggested that this regards all possible code defects 

• in 3.2.2 “a couple of times” replaced with “multiple times” because for large documents a couple of 
times is not enough 

• in 4.2.1 “test object” replaced with “test item”, because this is the proper term in the context of 
applying test techniques 

• in 4.2.1 added that invalid equivalence partitions should be tested in isolation to avoid defect 
masking 

• in 4.2.4 “visited states” replaced with “exercised states”, since “exercise” is the proper term in the 
context of covering the model elements by test cases 

• In 4.2.4 “state transition diagram” replaced with “state diagram”, as this is the common name of this 
model in computer science, and also to be consistent with the Model-based testing syllabus 

• In 5.1.1 “constraints” in the first bullet point removed, constraints are the focus of the second bullet 
point 

• In 5.1.3 “completion criteria” is used in the context of binary “yes/no” criteria, not as a synonym of 
“exit criteria”, so the appropriate term was changed 

• in 5.1.6 the relation between test pyramid layers and test isolation levels is corrected (the higher 
the layer, the lower is the test isolation). As well we replaced “a reasonable coverage” with “a 
reasonable level of coverage” 

• In 5.5 “anomalies” exchanged with “defects or anomalies” 
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• in 6.2 “defect rate” replaced with “failure rate” and “that are too complicated for humans to derive” 
replaced by “that are too complicated for humans to determine" 

Moreover, several typos were fixed and some terms were unified across the whole syllabus (e.g., conduct 
-> perform). 

 

RELEASE NOTES FOR THE 4.0 VERSION 

ISTQB® Foundation Syllabus v4.0 is a major update based on the Foundation Level syllabus (v3.1.1) and 
the Agile Tester 2014 syllabus. For this reason, there are no detailed release notes per chapter and section. 
However, a summary of principal changes is provided below. Additionally, in a separate Release Notes 
document, ISTQB® provides traceability between the learning objectives (LO) in the version 3.1.1 of the 
Foundation Level Syllabus, 2014 version of the Agile Tester Syllabus, and the learning objectives in the 
new Foundation Level v4.0 Syllabus, showing which LOs have been added, updated, or removed. 

At the time the syllabus was written (2022-2023) more than one million people in more than 100 countries 
have taken the ISTQB® Foundation Level exam, and more than 800,000 are certified testers worldwide. 
With the expectation that all of them have read the Foundation Syllabus to be able to pass the exam, this 
makes the Foundation Syllabus likely to be the most read software testing document ever! This major 
update is made in respect of this heritage and to improve the views of hundreds of thousands more people 
on the level of quality that ISTQB® delivers to the global testing community. 

In this version all LOs have been edited to make them atomic, and to create one-to-one traceability between 
LOs and syllabus sections, thus not having content without also having a LO. The goal is to make this 
version easier to read, understand, learn, and translate, focusing on increasing practical usefulness and 
the balance between knowledge and skills. 

This major release has made the following changes: 

• Size reduction of the overall syllabus. Syllabus is not a textbook, but a document that serves to 
outline the basic elements of an introductory course on software testing, including what topics 
should be covered and on what level. Therefore, in particular: 

o In most cases examples are excluded from the text. It is a task of a training provider to 
provide the examples, as well as the exercises, during the training 

o The “Syllabus writing checklist” was followed, which suggests the maximum text size for 
LOs at each K-level (K1 = max. 10 lines, K2 = max. 15 lines, K3 = max. 25 lines) 

• Reduction of the number of LOs compared to the Foundation Level v3.1.1 and Agile v2014 syllabi 

o 14 K1 LOs compared with 21 LOs in FL v3.1.1 (15) and AT 2014 (6) 

o 42 K2 LOs compared with 53 LOs in FL v3.1.1 (40) and AT 2014 (13) 

o 8 K3 LOs compared with 15 LOs in FL v3.1.1 (7) and AT 2014 (8) 

• More extensive references to classic and/or respected books and articles on software testing and 
related topics are provided 

• Major changes in chapter 1 (Fundamentals of Testing) 

o Section on testing skills expanded and improved 

o Section on the whole team approach (K1) added 
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o Section on the independence of testing moved to Chapter 1 from Chapter 5 

• Major changes in chapter 2 (Testing Throughout the SDLCs) 

o Sections 2.1.1 and 2.1.2 rewritten and improved, the corresponding LOs are modified 

o More focus on practices like: test-first approach (K1), shift-left (K2), retrospectives (K2) 

o New section on testing in the context of DevOps (K2) 

o Integration testing level split into two separate test levels: component integration testing 
and system integration testing 

• Major changes in chapter 3 (Static Testing) 

o Section on review techniques, together with the K3 LO (apply a review technique) 
removed 

• Major changes in chapter 4 (Test Analysis and Design) 

o Use case testing removed (but still present in the Advanced Test Analyst syllabus) 

o More focus on collaboration-based approach to testing: new K3 LO about using ATDD to 
derive test cases and two new K2 LOs about user stories and acceptance criteria 

o Decision testing and coverage replaced with branch testing and coverage (first, branch 
coverage is more commonly used in practice; second, different standards define the 
decision differently, as opposed to “branch”; third, this solves a subtle, but serious flaw 
from the old FL2018 which claims that „100% decision coverage implies 100% statement 
coverage” – this sentence is not true in case of programs with no decisions) 

o Section on the value of white-box testing improved 

• Major changes in chapter 5 (Managing the Test Activities) 

o Section on test strategies/approaches removed 

o New K3 LO on estimation techniques for estimating the test effort 

o More focus on the well-known Agile-related concepts and tools in test management: 
iteration and release planning (K1), test pyramid (K1), and testing quadrants (K2) 

o Section on risk management better structured by describing four main activities: risk 
identification, risk assessment, risk mitigation and risk monitoring 

• Major changes in chapter 6 (Test Tools) 

o Content on some test automation issues reduced as being too advanced for the 
foundation level – section on tools selection, performing pilot projects and introducing 
tools into organization removed 
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11. Index 

0-switch coverage, 42 
2-value BVA, 40 
3-value BVA, 40 
absence-of-defect fallacy, 18 
acceptance criteria, 20, 45 
acceptance test-driven development, 25, 26, 

46 
acceptance testing, 29 
action item, 20 
all states coverage, 42 
all transitions coverage, 42 
alpha testing, 29 
anomaly, 35, 56 
author (reviews), 36 
baseline, 56 
behavior-driven development, 25, 26 
beta testing, 29 
black-box test technique, 39 
black-box testing, 30 
boundary, 40 
boundary value analysis, 40 
branch, 43 
branch coverage, 43 
branch testing, 43 
burn-down chart, 55 
business rule, 41 
change request, 20 
checklist, 44 
checklist-based testing, 44 
collaboration, 45 
collaboration tool, 59 
collaboration-based test approach, 45 
communication, 55 
compatibility, 30 
component integration testing, 29 
component testing, 29 
conditional branch, 43 
configuration item, 56 
configuration management, 56 
confirmation bias, 22 
confirmation testing, 16, 30 
containerization tool, 59 
continuous delivery, 26 
continuous improvement, 28 
continuous integration, 26 

continuous testing, 19 
control directives, 20 
control flow graph, 43 
coverage, 20, 40, 41, 42, 43, 45 
coverage item, 19, 20, 40, 41, 42, 43, 44 
coverage-based prioritization, 50 
debugging, 16 
decision table testing, 41 
defect, 17, 33, 34, 56 
defect management, 56 
defect report, 20, 36, 56 
dependency (prioritization), 50 
DevOps, 26, 56 
DevOps tool, 59 
domain-driven design, 25 
driver, 20 
dynamic testing, 15, 34 
Each Choice coverage, 40 
early testing, 18, 27, 33 
entry criteria, 20, 49 
equivalence partitioning, 39 
error, 17 
error guessing, 44 
estimation, 49 
estimation based on ratios, 49 
executable requirement, 46 
executable statement, 42 
exhaustive testing, 18 
exit criteria, 20, 37, 49 
experience-based test technique, 39, 43 
exploratory testing, 44 
extended-entry decision table, 41 
extrapolation, 49 
extreme programming, 25 
failure, 17, 34 
fault attack, 44 
feature-driven development, 25 
fedback, 35 
feedback, 37 
flexibility, 30 
formal review, 36 
functional appropriateness, 29 
functional completeness, 29 
functional correctness, 29 
functional testing, 29 



 
Certified Tester 

Foundation Level 

 

  

 

v4.0.1 Page 77 of 78 2024-09-15 

© International Software Testing Qualifications Board 

Given/When/Then, 26, 46 
guard condition, 41 
harm, 52 
hot fix, 31 
impact, 52 
impact analysis, 31 
incremental development model, 25 
independence of testing, 22 
independent test team, 29 
informal review, 36 
inspection, 37 
integration testing, 29 
interaction capability, 30 
invalid partition, 40 
INVEST, 45 
iteration planning, 48 
iterative development model, 25 
Kanban, 25 
Lean IT, 25 
lessons learned, 20 
likelihood, 52 
limited-entry decision table, 41 
maintainability, 30 
maintenance testing, 31 
management tool, 59 
manager (reviews), 36 
metric, 54 
mistake, See error 
non-functional testing, 27, 29 
non-functional testing tool, 59 
operational acceptance testing, 29 
pair testing, 19 
Pareto principle, 18 
performance efficiency, 30 
planning poker, 50 
portability, 30 
prioritization, 50 
product risk, 52 
project risk, 52 
prototyping, 25 
quality, 15, 16 
quality assurance, 17 
quality characteristic, 34 
quality control, 16, 17 
regression testing, 16, 30 
release planning, 48 
reliability, 30 
reporting, 54 
requirements-based prioritization, 50 

retrospective, 28 
review, 33 
review leader, 36 
review process, 35 
review techniques, 33 
reviewer, 36 
risk, 15, 52, 55 
risk analysis, 52 
risk assessment, 52 
risk control, 53 
risk identification, 52 
risk impact, 52 
risk level, 52 
risk likelihood, 52 
risk management, 51 
risk matrix, 53 
risk mitigation, 53 
risk monitoring, 53 
risk register, 20 
risk-based prioritization, 50 
risk-based testing, 51 
root cause, 17 
safety, 30 
scribe (reviews), 36 
Scrum, 25 
SDLC, See software development lifecycle 
security, 30 
sequential development model, 25 
service virtualization, 20 
session-based testing, 44 
shift-left, 27 
simulation, 29 
simulator, 20 
skill, 21 
software development lifecycle, 25 
specification, 30 
specification workshop, 46 
spiral model, 25 
state table, 41 
state transition diagram, 41 
state transition testing, 41 
statement, 42 
statement coverage, 42 
statement testing, 42 
static analysis, 27, 33 
static testing, 15, 33, 43 
static testing tool, 59 
stub, 20 
system integration testing, 29 
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system testing, 29 
technical review, 37 
test analysis, 19, 26 
test approach, 48 
test automation, 27, 59 
test automation framework, 46 
test basis, 19, 20, 29 
test case, 19, 20, 50 
test case prioritization, 50 
test charter, 20, 44 
test completion, 19, 54 
test completion report, 20, 28, 55 
test condition, 19, 20, 45, 46 
test control, 19, 53 
test coverage tool, 59 
test data, 19, 20 
test design, 19, 26 
test design tool, 59 
test effort, 49 
test environment, 19, 20 
test execution, 19 
test execution schedule, 19, 20 
test execution tool, 59 
test harness, 29 
test implementation, 19 
test implementation tool, 59 
test level, 25, 28 
test log, 20 
test management role, 21 
test metric, 54 
test monitoring, 19, 53 
test object, 15, 19, 29 
test objective, 15, 25, 48 
test plan, 20, 48 
test planning, 18, 48 
test policy, 48 
test procedure, 19, 20, 50 
test process, 18, 19 
test progress report, 20, 54 

test pyramid, 50 
test report, 54 
test result, 19, 56 
test schedule, 20 
test script, 19, 20 
test status, 55 
test strategy, 20, 48 
test suite, 20, 50 
test technique, 39 
test tool, 59 
test type, 29 
testability, 19 
test-driven development, 25, 26 
testing, 15, 16 
testing quadrants, 51 
testing role, 21 
testware, 19, 20 
three-point estimation, 50 
traceability, 20 
transition, 41 
unconditional branch, 43 
Unified Process, 25 
unit test framework, 29 
usability, 30 
user acceptance testing, 29 
user story, 45 
V model, 25 
valid partition, 40 
valid transitions coverage, 42 
validation, 15, 33 
verification, 15, 33 
virtual machine, 59 
walkthrough, 36 
waterfall model, 25 
white-box test technique, 39, 42 
white-box testing, 30 
whole team approach, 22 
Wideband Delphi, 50 

 


